
What Exactly Determines the Type?
Inferring Types with Context

Ligeng Chen∗
∗National Key Laboratory for Novel Software Technology, Nanjing University, Nanajing 210023, China

chenlg@smail.nju.edu.cn

Abstract—Closed-source programs lack crucial information
vital for code analysis because that information is stripped
on compilation to achieve smaller executable size. Variable
type information is fundamental in this process. In this paper,
we implement a system called CATI (Context-Assisted Type
Inference), which locates variables from stripped binaries and
infers 19 types from variables. Experiments show that it infers
variable type with 71.2% accuracy on unseen binaries.

Index Terms—Stripped Binary; Variable Type; Static Analysis

I. INTRODUCTION

Binary analysis is always a hot topic in the security field.

However, when high-level language is transformed into binary

code (e.g., after compilation), it cannot preserve all the source-

level information. Recovering the semantic information of

stripped binaries helps understand the whole program.

Variable takes a vital part of program semantics, and the

type suggests the functionality of themselves. Recently, some

works (e.g., [1]) leverage dynamic analysis to collect run-time

information, while others (e.g., [2]) employ static analysis.

Besides excessively searching for endless rules, all the pre-

vious works are appealing to much expert knowledge. With

diverse compiler configurations, similar instructions might

operate the variable of a different type. We call these variables

uncertain samples. Therefore, there is little information left to

distinguish them.

To overcome the difficulties above, a considerable number

of new methods and tools [3], [4] are adopting machine

learning models trained on massive data to do binary analysis,

including inferring types from stripped binaries. Nevertheless,

in these approaches, some expert knowledge is still essential.

For instance, in the aforementioned work, He [3] traces

the data flow of the instructions using BAP, then builds a

dependency graph, finally uses a probabilistic graphical model

to infer the variable type and its name. It relies heavily on data

dependency analysis to build the graph. TypeMiner [4] also

builds data object trace via data dependency. They state that a

smaller size of the dependency graph negatively affects their

results. For half of the variables they extract, they cannot find

enough instruction dependency and they ignore these variables

because they are not able to predict them well. Meanwhile,

Zeng [5] shows that even control flow cannot be accurately

recovered without debug information. All the evidence above

suggests that rebuilt information from stripped binary is always

scattered, thus makes accurate type inference difficult. In our

work, we aim to solve this problem. We call these variables

that we cannot build rich data dependency as orphan variables.

Since there’s not much information about orphan variables,

they are often uncertain samples.

Given all these difficulties, we need to employ richer

features to infer the variable type. Fortunately, although the

dependency of our target instruction is sometimes not easy

to build, we can take the instruction context into account. In

our work, we focus on memory access instructions and deref-

erence instructions as these instructions operate one variable

at a time. These instructions are called target instructions.

Instruction context is some instructions before and after the

target instruction. According to our survey, the variables that

the instruction context operates are likely to be the same type

as the target operates. We call it same variable type clustering
phenomenon.

Thus, we leverage the instruction context of target in-
struction to infer the variable type. We define a new feature

for a variable called Variable Usage Context (VUC) as the

aggregation of instruction context and target instruction. In-

ferring variable type is transformed into VUC classification. In

each VUC, it contains the target variable instruction with 10

instructions forward and 10 instructions backward. Moreover,

if we can find several instructions that operate the same

variable, we will utilize a voting mechanism to make the final

decision. We implement a system, called CATI, which takes

a stripped binary as input and outputs located variables with

the predicted type information. To the best of our knowledge,

CATI is the first to accomplish the most amount of types

inference in stripped binaries compiled from C code with

few expert knowledge, and the first system leveraging context

information to infer the 19 types of variables.

II. MOTIVATION AND METHOD

Emprical Study. To validate our consideration, we did a

thorough investigation of the real-world programs. Unfortu-

nately, we survey all the variables in our data set extracted

by IDA Pro — a total of 3 million variables, and only about

65% of variables have more than 3 related instructions. That is,

35% of variables only have 1 or 2 instructions, which we call it

orphan variable mentioned before. The difficulty of analyzing

orphan variables lies in two aspects. On the one hand, 1 or

2 instructions cannot provide enough structural information

to infer the information of type for the previous works [3].

On the other hand, two cases with the same instruction(s) but

71

2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S)

978-1-7281-7260-6/20/$31.00 ©2020 IEEE
DOI 10.1109/DSN-S50200.2020.00038

Authorized licensed use limited to: Nanjing University. Downloaded on August 23,2020 at 07:04:56 UTC from IEEE Xplore. Restrictions apply.

movq $0x0,0xa8(%rsp)

je 4179f5 <map_html_tags+0x255>
…

mov %rax,0xb0(%rsp)
mov %rax,0xc8(%rsp)

movb $0x0,0x18(%rsp)

movl $0x8,0x40(%rsp)
…

movl $0x0,0xbc(%rsp)
callq 4044d0 <memchr@plt>

lea 0x220(%rsp),%rax

movq $0xADDR 0xIMM(%rsp)
je ADDR <FUNC+0xADDR>

…
mov %rax 0xIMM(%rsp)
mov %rax 0xIMM(%rsp)

movb $0xADDR 0xIMM(%rsp)
movl $0xADDR 0xIMM(%rsp)

…
movl $0xADDR 0xIMM(%rsp)
callq ADDR <FUNC>

lea 0xIMM(%rsp) %rax

struct

callq 4044d0 memchr@pltq p

<2><1a0a8e>: Abbrev Number: 57 (DW_TAG_variable)
<1a0a8f> DW_AT_name :attr_pair_initial_storage
<1a0a96> DW_AT_type : <0x1a084b>

<1><1a084b>: Abbrev Number: 30 (DW_TAG_structure_type)

: struct

Sample 1

Sample 2

Sample 3

M
o

d
e

l

U
n

se
e

n

S
trip

p
e

d

B
in

a
ry

struct

char 0.64

struct

0.99M
o

d
e

l

stru
c

t

0.98

B
in

a
ry w

ith

d
e

b
u

g
 sym

b
o

ls

Fig. 1. An overview of the steps for rebuilding type information of the binary in Figure (a) to (d) (training phase). Figure (e) to (f) shows the final judgment
of a variable (inferring phase).

different types are uncertain samples. In our study, uncertain
samples take up over 97% of orphan variables. That is, about

34 % of variables cannot be distinguished without extending

the features.

To verify our hypothesis of Same Type Variable Clustering
Phenomenon, we carry out statistics on over 107 thousand

variables (VUC). We find about 540 thousand variable instruc-

tions within 107 thousand VUCs, and in each VUC, over 53%

of instructions completely share the same variable type as the

target variable. The result is impressive and it can support the

following works.

Workflow. As shown in Figure 1, CATI is guided by the

following process. CATI firstly locates the target instructions

corresponding to variables with the help of IDA Pro in

stripped binaries. Next, CATI generalizes the operands of

each instruction, such as actual address, actual function name,

and immediate value. To vectorize the assembly code, CATI

employs Word2Vec model to represent each VUC, which is

often used in natural language processing. Then, we train

a multi-stage classifier with a convolutional neural network

(CNN). Using the trained models, we can output the most

likely type of each VUC and the confidence of each type which

is prepared for the next stage. Lastly, we add confidence results

of each type for a confidence-based voting mechanism.

III. RESULT AND DISCUSSION

We set up a comprehensive training set consist of 2141 bina-

ries from popular and well-written projects. For the diversity of

training data, we build each project with different optimization

levels (-O0 to -O3), but all with the same compiler—GCC. To

validate the tool, we test it on total different 12 applications

(e.g., binutils, inetutils).

CATI achieves 68% of accuracy over 1,023,432 VUCs. Af-

ter voting, it reaches 71% of accuracy over 159,774 variables.

We also set a fair experiment with SOTA – DEBIN [3] on 17

types, and we got 11% higher on accuracy (0.84 V.S. 0.73).

To confirm that our prototype can work on other mainstream

compilers, we apply our tool on Clang as an additional

experiment. With the same data set and the same experiment

set, CATI achieves 82% of accuracy over all variables.
However, CATI is still a black box for us. So we raise the

following questions.

• RQ1: How do the different compiler options (e.g. com-

piler, version, optimization level, etc.) influence the ap-

pearance of different variables?

• RQ2: Could we parse the result of machine learning and

extract it into rules which may help to understand the

behavior of compiler on variables?

• RQ3: Could we set up a multi-modal model that gathers

information from static and dynamic to better infer the

semantics from stripped binaries?

Our additional experiment indicates that different compilers’

behavior is distinguishable on the granularity of assembly

code, while different optimization levels behave closer but

still have differences. Further more, we want to investigate

how a small change in compiler finally influence the binaries

it produces, and how these binaries relate to its source code

in a reverse direction.

REFERENCES

[1] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineering
of types in binary programs.” in NDSS, 2011.

[2] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proceedings of the 11th Annual
Information Security Symposium. CERIAS-Purdue University, 2010, p. 5.

[3] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin:
Predicting debug information in stripped binaries,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 1667–1680.

[4] A. Maier, H. Gascon, C. Wressnegger, and K. Rieck, “Typeminer: Recov-
ering types in binary programs using machine learning,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2019, pp. 288–308.

[5] D. Zeng and G. Tan, “From debugging-information based binary-level
type inference to cfg generation,” in Proceedings of the Eighth ACM
Conference on Data and Application Security and Privacy. ACM, 2018,
pp. 366–376.

72

Authorized licensed use limited to: Nanjing University. Downloaded on August 23,2020 at 07:04:56 UTC from IEEE Xplore. Restrictions apply.

