2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

CATI: Context-Assisted Type Inference from
Stripped Binaries

Ligeng Chen*, Zhongling He* and Bing Mao*
*National Key Laboratory for Novel Software Technology, Nanjing University, Nanajing 210023, China
{chenlg, zhe} @smail.nju.edu.cn, maobing @nju.edu.cn

Abstract—Code analysis is a powerful way to eliminate vul-
nerabilities. Closed-source programs lack crucial information
vital for code analysis because that information is stripped on
compilation to achieve smaller executable size. Restoration has
always been a challenge for experts. Variable type information
is fundamental in this process because it helps to provide a
perspective on program semantic. In this paper, we present
an efficient approach for inferring types, and we overcome the
challenge of scattered information provided by static analysis
on stripped binaries. We discover that neighboring instructions
are likely to operate the same type of variables, which are
leveraged to enrich the features that we rely on. Therefore, we
implement a system called CATI, which locates variables from
stripped binaries and infers 19 types from variables. Experiments
show that it infers variable type with 71.2% accuracy on unseen
binaries. Meanwhile, it takes approximately 6 seconds to process
a typical binary.

Index Terms—Stripped Binary; Variable Type; Static Analysis

I. INTRODUCTION

Binary analysis is always a hot topic in the security field.
Experts need to rebuild the information from stripped binaries
to provide vital information for the following tasks: decompi-
lation [1], code hardening [2]-[4], bug-finding [5], [6], clone
detection [7]-[10], etc. However, when high-level language
is transformed into binary code (e.g., after compilation), it
cannot preserve all the source-level information. Recovering
the semantic information of stripped binaries helps understand
the whole program.

A typical program stores 2 kinds of information in memory:
code and data. When the program is running, it transfers value
between memory and registers and does the calculation on
values stored in registers. A storage location, either register or
memory, that stores a value, is called a variable. If debug infor-
mation is present, variables are paired with a symbolic name
and type information, which are defined by the programmer in
high-level source code. That is, every available memory unit
and every register can be a variable. One important task for
reverse engineering is to figure out the functionality of each
variable, which even can help improve fuzzing [11].

Variable type suggests the functionality of the variable. For
example, an array of chars is likely to be an input buffer.
Therefore, inferring the variables’ type partially recovers their
functionality. The only way to tell the difference between
variables is to observe the instructions that operate them.
Hence, the chain of instructions could be used as a vital clue.

But since compilation optimizes the binary code, much high-
level information isn’t preserved. In our task, that is, similar
instructions might operate the variable of a different type. We
call these variables uncertain samples. Therefore, there is little
information left to distinguish them.

Currently, commercial tools widely used in industry, such
as IDA Pro [12], have an acceptable performance on type
inference but they depend on principled and heuristic-based
rules. Recently, several works [2], [13]-[15] do a thorough
static analysis to improve the accuracy of type inference.
Others [16], [17] use dynamic analysis to collect runtime
information. But dynamic analysis cannot cover all the binary
code and we need to set up environments for each binary to
run. Additionally, none of them avoids the reliance on a set
of manually crafted rules based on expert knowledge. With
the development of code optimization technology, previous
rules may fail to infer types from the binary build from recent
compilers. Thus summarizing and updating these clues are
time-consuming.

To free from excessively searching for endless rules or
appealing to expert knowledge, a considerable number of
new methods and tools [1], [18], [19] are adopting machine
learning models trained on massive data to do binary analysis,
including inferring types from stripped binaries. Nevertheless,
in these approaches, some expert knowledge is still essential.
For instance, in the aforementioned work, He [1] traces the
data flow of the instructions using BAP [20], then builds a
dependency graph, finally uses a probabilistic graphical model
called conditional random field [21] to infer the variable type
and its name. It relies heavily on data dependency analysis to
build the graph. TypeMiner [22] also builds data object trace
via data dependency. For base type, they extract definition-use
chains. For structured types, they analyze dereference instruc-
tions on its members. They also build a dependency graph
and infer using a graphical model. However, they state that a
smaller size of the dependency graph negatively affects their
results. For half of the variables they extract, they cannot find
enough instruction dependency and they ignore these variables
because they are not able to predict them well. Control flow
analysis might help to build data dependency between basic
blocks. However, Zeng [23] shows that control flow cannot
be accurately recovered without debug information. All the
evidence above suggests that rebuilt information from stripped
binary is always scattered, thus makes accurate type inference
difficult. In our work, we aim to solve this problem. We call

978-1-7281-5809-9/20/$31.00 ©2020 IEEE
DOI 10.1109/DSN48063.2020.00028

88

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2020 at 04:23:09 UTC from IEEE Xplore. Restrictions apply.

these variables that we cannot build rich data dependency as
orphan variables. Since there’s not much information about
orphan variables, they are often uncertain samples.

Given all these difficulties, we need to employ richer
features to infer the variable type. Fortunately, although the
dependency of our target instruction is sometimes not easy
to build, we can take the instruction context into account. In
our work, we focus on memory access instructions and deref-
erence instructions as these instructions operate one variable
at a time. These instructions are called target instructions.
Instruction context is some instructions before and after the
target instruction. According to our survey, the variables that
the instruction context operates are likely to be the same type
as the target operates. We call it same variable type clustering
phenomenon.

Thus, we leverage the instruction context of target in-
struction to infer the variable type. We define a new feature
for a variable called Variable Usage Context (VUC) as the
aggregation of instruction context and target instruction. In-
ferring variable type is transformed into VUC classification,
or in general, a text classification task. Moreover, if we can
build data dependency, in other words, we can find several
instructions that operate the same variable, we will utilize a
voting mechanism to make the final decision. More concretely,
we implement a system, called CATI, which takes a stripped
binary as input and outputs located variables with the predicted
type information. To the best of our knowledge, CATI is
the first to accomplish the most amount of types inference
in stripped binaries compiled from C code with few expert
knowledge, and the first system leveraging context information
to infer the variable type. At the end of our paper, we provide
a detailed evaluation of CATI and compare with state-of-art
approaches in term of performance in Section VIIL.

The main contributions of our work are as follows:

1. We discover that the problem of orphan variables and
uncertain samples cannot be well solved by previous work,
thus we leverage context information to enrich the features to
infer the variable type.

2. We define a new feature called Variable Usage Context
(VUC), which consists of the target instruction and its instruc-
tion context. VUC captures rich behavior information from the
instruction context, and we successfully transfer the problem
into a text classification task.

3. We accomplish a thorough evaluation of a wide range
oapplications, and the result shows a great performance from
different aspects.

The rest of our paper is organized as follows: motivation and
overview of CATT are given in Section II and III. Section IV
to V introduces the individual process of our system in detail.
To evaluate our method, we present our implementation part
and the empirical evaluation result in Section VI and VII. We
hold a discussion part in Section VIII and related works are
classified as discussed in Section IX. Section X takes the end
of our paper to conclude our work.

89

char * struct

lea 0x80 (%rsp) ,%rax lea 0x220(%rsp) ,%rax

al) nm-new: _bfd_coff_link_input_bfd
void *

a2) wget: map_html_tags
long int

mov %rsi,-@x10(%rbp) mov %rsi,-@x10(%rbp)

cmp -@x10 (%rbp) ,%rax cmp -0x10(%rbp) ,%rax

b1) grep: raw_comparator b2) sed: maybe_realloc

Fig. 1. Examples of uncertain samples and orphan variables.

II. FEASIBILITY AND CHALLENGE
A. Problem Definition

Debug information of commercial off-the-shelf (COTS)
binaries is often stripped for several purposes, such as size
reduction, information hiding, etc. It is a challenging task
to learn the mapping relationship between assembly variable
instruction and the corresponding variable type.

Given a piece of stripped binary B, our goal
is to automatically extract VUCs from B, where
VUC,,VUC,,...,VUC, C B. Each VUC contains the
target variable instruction with 10 instructions forward and
10 instructions backward, which can be presented as,

VUC; = {Insi—w,..,Ins;—1,Ins;, Ins;i1, ... InSitw}

Ins; denotes the central instruction which is correlated to
the target variable, w denotes the windows size of VUC, and
Ins;y; denotes the instruction which is j instruction(s) away
from central instruction. Towards to empirical experiment, we
choose window size w to be 10. For traceable Variable V;,
we aim to make the final decision for it relying on the voting
mechanism by the prediction result of VUCs whose central
instruction is related to V.

B. Motivation

We illustrate some motivating cases in this part which are
hard for previous work to solve and inspire our main idea.

Orphan Variable. Previously, researchers strongly believe
that the trace of the variable may disclose some clues of
type information. So most of the former works [1], [16],
[22] coincidentally trace the variable whether based on control
flow or data flow. Unfortunately, we survey all the variables
in our data set extracted by IDA Pro — a totally 3 million
variables, and only about 65% of variables have more than
3 related instructions. That is, 35% of variables only have 1
or 2 instructions, which we call it orphan variable mentioned
before.

The difficulty of analyzing orphan variables lies in two
aspects. On the one hand, 1 or 2 instructions cannot provide
enough structural information to infer the information of type
for the previous works [1], [22]. On the other hand, two cases

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2020 at 04:23:09 UTC from IEEE Xplore. Restrictions apply.

with the same instruction(s) but different types are uncertain
samples, which we defined before. For instance, as shown in
Figure 1 al) and a2), the two cases appear to have the same
instruction (offset will be generalized in the pre-processing
procedure) but indicate different variable types, and both of
the target variables have only one corresponding instruction.
As shown in Figure 1 bl) and b2), the two variables from
different binaries share the same instructions, which suffers
from a similar situation. Previous works are not able to use
the limited information to find the mapping relationship with
variable and instruction(s) for the cases above.

Training Set Testing Set

Variables 3,952,246 167,223
VUCs 22,476,210 1,074,227
Variables with 1 VUC 220,250 9,372
Uncertain Samples-1 216,909 8,687
Variables with 2 VUCs 1,189,466 39,839
Uncertain Samples-2 1,159,307 34,178
TABLE I

STATISTICAL RESULT OF orphan variables AND uncertain samples IN
TRAINING SET AND TESTING SET.

To consolidate our discovery, we survey on both training
set and testing set and show the result in Table I. Row 2
and row 3 show the number of variables and related VUCs.
Note that each variable corresponds to different amounts of
VUCs. Row 4 and row 6 show the number of orphan variables
— varlables are related to 1 or 2 instructions, which we
have defined before. Row 5 and row 7 show the number
of variables that have the same instruction(s) with others,
but they have different types, which we call it uncertain
samples. We discover this kind of uncertain samples cannot
be distinguished well by previous works. It is obvious that
uncertain samples take up over 97% of orphan variables,
and orphan variables take up over 35% of all variable in the
data set. As shown in Figure 1, the two cases are the typical
uncertain samples. If we want to distinguish the uncertain
samples, we need to extend the features of them.

Same Type Variable Clustering Phenomenon. If two
entities do arithmetical operations, they need to belong to
the same variable type for the reason of aligning and register
storage length. Hence, we do a statistical analysis to verify our
hypothesis that the context of the target variable containing
a considerable amount of instructions related to the same
variable type. Once the hypothesis is verified, we can leverage
the likely pattern of the same type variables to infer the target
variable. Fortunately, the result is convincing. We carry out
statistics on over 107 thousand variables, and we take the 10
forward instructions and 10 backward instructions into con-
sideration. We find about 540 thousand variable instructions
within 107 thousand VUCs, and in each VUC, over 53% of
instructions completely share the same variable type as the
target variable. As shown in Figure 2, it is a variable with type
struct in row 11 (lea 0x220(%rsp), %rax), and we found 10
variables around the instruction location, of which 60 percent
are the same variable type — struct. So here we conclude that
the distribution of variable type related to the instructions has
spatial locality. We define it as same type variable clustering

90

phenomenon. The analysis result above inspires us to leverage
instruction context information as new features.

$0x0,0xa8 (%rsp)
4179f5 <map_html_tags+0x255>

struct*

lea 0x120 (%rsp) ,%rax char

movslq %esi,%rsi

movl $0x100,0xb8(%rsp) struct

lea (%rdi,%rsi,1),%r15

movb $0x0@,0xc0(%rsp) struct

movl $0x100,0xd0(%rsp) struct

mov %rax,0xb0 (%rsp) struct

mov %rax,0xc8(%rsp) struct
==)lea 0x220(%rsp) ,%rax

movb $0x0,0x18(%rsp)

movl $0x8,0x40(%rsp) int

mov %rdi,%rbp

mov %rax,0x30(%rsp) struct*

mov %r15,%rdx

mov $0x3c,%esi

mov %rbp,%rdi

sub %rbp,%rdx

movl $0x0,0xbc (%rsp) struct

callg 4044d0 <memchr@plt>

= struct
struct attr_pair attr_pair_initial_storage[8];

int attr_pair_size = countof (attr_pair_initial_storage);

struct attr_pair *pairs = attr_pair_initial _storage;

Fig. 2. Same type variable clustering.

Usage of instruction Context. To overcome the challenge
of uncertain samples, we need to employ more related features
to distinguish the variable type. Intuitively, the neighboring
instructions can play a significant role to infer the type of
target variable. Taking the control flow and data flow into
consideration, the neighboring instructions may directly or
indirectly influence the behavior of the target variable.

To describe the relationship between the target variable and
neighboring variables more precisely, we take the case in
Figure 2 as an example. The target variable stays in row 11.
Instructions in row 7 to 10 are referring to the same variable—
attr_pair_initial_storage and the instruction in row 15 is a
pointer variable pointing to the target variable. To enrich the
features of variables, we bring in instruction context as new
features, which we define as variable usage context.

In the next section, we will introduce the process to infer
variable type with neighboring instructions in detail.

III. SYSTEM WORKFLOW

In this section, we provide an informal overview of our
method on an illustrative sample. Figure 3 shows how to locate
variables and infer their types from a snippet of assembly
code from a stripped binary. Assemblies represent the meta
operations of code at a lower level.

Given the piece of binary, CATI will output the prediction
result of each located variable instructions. In the following
paragraphs, we illustrate the main procedures of the system
on the problem of inferring the variable types.

Extract and Label Samples. CATI firstly locates the target
instructions corresponding to variables in stripped binaries.
At the same time, we extract their instruction contexts as
10 forward instructions and 10 backward instructions—21
instructions in total. Their aggregation is what we defined as
VUC. By leveraging debug information, we can easily label
VUC with the target variable’s type as shown in figure 3a).
For example, IDA pro helps us to find the corresponding stack
frame for VUC and its ground truth. For the limitation of static

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2020 at 04:23:09 UTC from IEEE Xplore. Restrictions apply.

$0x0,0xa8 (%rsp)
41795 <map_html_tags+0x255>

%rax,0xb0(%rsp)
%rax,0xc8(%rsp)

je

movq $OXADDR OxIMM(%rsp)
ADDR <FUNC+@xADDR>

B
D S

Word2Vec Model

a
s
c S -
oa 2 mov %rax OxIMM(%rsp)
g ; \ mov %rax OxIMM(%rsp) Z Sem il
= $0x0,0x18 (%rsp) o
g 5 $0x8,0x40 (%rsp) ((ol Sample 2
o 0 Oxbc(g;sp) movb $OXADDR @xIMM(%rsp) @] sample 3
204440 <memchr@plt> movl $OXADDR OxIMM(%rsp)
movl S$OXADDR OxIMM(%rsp)
<2><1a0a8e>: Abbrev Number: 57 (DW_TAG_variable) callg ADDR <FUNC>
<1a0a8f> DW_AT_name :attr_pair_initial_storage \
<1a0a96> DW_AT_type : <0x1a084b> StTUCt
<1><1a084b>: Abbrev Number: 30 (DW_TAG_structure_type)
P Vector data
attr_pair_initial_storage: struct ector d
TRAINING PHASE a) Extract and Label b) Generalized assembly c) Word2Vec embedding d) Model training
TESTING PHASE 065
PN .
25| [%
55 o S
3ozl D> > > 0.98 c
ST% o I3}
RS) %
o
0.64
vucC vector
e) Data process and model prediction f) Vote

Fig. 3. An overview of the steps for rebuilding type information of the binary in Figure (a) to (d) (training phase). Figure (e) to (f) shows the final judgment

of a variable (inferring phase).

movq $0x0,0xa8 (%rsp)
Instruction Context < je 417915 <map_html_tags+0x255>
mov %rax,®xb0 (%rsp)
L_ | mov %rax,0xc8(%rsp)
Target Instruction < [Lea 0x220(%rsp) ,%rax — Vuc
[| movb S0x0,0x18 (%rsp)
movl $Ox8,0x40(%rsp)
Instruction Context <
movl $Ox0,0xbc(%rsp)
callg 4044d0 <memchr@plt>

Fig. 4. Structure of VUC.

analysis, the mapping result of some VUCs may go wrong
with tools. But the result is still convincible.

Generalize Operands. Next, CATI generalizes the operands
of each instruction. All the VUCs related to the target variables
show how the variables are stored, interpreted and manip-
ulated, which are the only and strong features to infer the
variable type. A naive way to represent the instructions is to
train a huge model so that each mnemonic and operand has
a vector representation. However, operands may consist of a
function address or a combination of register and offset. Offset
and function address might be different in each program. To
reduce the possibility of these values, we make the following
substitution rules: (i) the actual address is replaced with
ADDR,; (ii) the actual function name is replaced with FUNC;
(iii) the immediate value is replaced with IMM.

Assembly Code Embedding. In this procedure, CATI
employs Word2Vec [24] model to represent each VUC,
which is often used in natural language processing. With
the help of Word2Vec, we are able to vectorize the as-
sembly code containing the semantics of neighboring in-
structions. This inspires us to utilize Word2Vec to em-
bed the instructions to a vector representation. We embed
each mnemonic and operand into a vector with a length

91

of 32 and embed each instruction into a vector with a
length of 96 (filling instructions with less than two operands
with a BLANK operator for padding). Given a sequence
of VUCl = {Insi,lo, ooy I’I”Lsifl, ITLSZ‘, I’I”LSH,l, cey In8i+10},
the algorithm transforms it into a [21,96] matrix as shown in
figure 3(c).

Train a Multi-Stage Classifier. To identify the type of each
variable, we train a multi-stage classifier with a convolutional
neural network (CNN), which is able to encode the hidden
features. With the data set consists of enormous pairs of VUC
and their types, we set up a tree-like multi-stage classifier
which we will introduce in detail in Section V.

Predict Result for Each VUC. With stripped binaries input,
CATTI disassembles the binary code and locates the variables
to extract VUCs with the assistance of IDA Pro. Using the
already trained models, we can output the most likely type of
each VUC and the confidence of each type which is prepared
for the next stage.

Voting. In the testing phase, to make the final decision of the
target variable, we leverage the prediction confidence of each
VUC and a set of VUC extracted according to data dependency
from the former stages. We add confidence results of each type
for confidence-based voting mechanism. It avoids letting the
borderline result control the decision, but almost completely
utilizes all the prediction result. We will explain it later.

IV. VARIABLE ANALYSIS
A. Extract and Label

In this paper, we restrict our study to the x86_64 architecture
for a more precise evaluation of our work. We also believe that
the techniques can be extended naturally to other architectures.

Firstly, we need to recover the variables from binaries. Our
work is focused on the problem of type inference, and previous
works [1], [25] have achieved a good result (over 90 % on

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2020 at 04:23:09 UTC from IEEE Xplore. Restrictions apply.

average) of variable recovery. Thus, we assume that this task
can be done accurately enough by existing work and we can
directly use them in our pipeline. In our system, we choose
IDA Pro.

Then, we extract the data flow of these variables in stripped
binaries using IDA Pro and pair each variable with type
information extracted from DWARF [26] debug information.
DWAREF contains detailed information on each variable, such
as its name, parent function, offset to stack frame and type.
Afterward, we resolve the type of each variable. If we found
that the type has been redefined by typedef, we would recur-
sively find its base type. Finally, we find the instruction context
of target instruction with objdump.

As a result, we are now able to get the VUCs and their
type. For each variable, we name all VUCs on its data flow
uniquely, so that we know they belong to the same variable
while voting.

B. Generalization

Each VUC consists of 21 instructions and each instruc-
tion consists of 1 mnemonic and no more than 2 operands.
Our system is implemented on x86_64 platform so that the
mnemonic is within x86_64 architecture’s instruction set.
However, operands have far more possibilities. It could be
an immediate number, a register, an offset to register or an ef-
fective address determined by a base pointer, an offset pointer
and a scale factor. We hope to use some unified operands to
represent similar operations. For example, we consider that
the immediate value often doesn’t play a significant role in
representing semantic information. Different function names
or different jump addresses do not contain much information
about variable behavior. Therefore, we choose to neglect this
binary-specific information and replace them with unified
elements. To pad the length of each VUC, we fill BLANK
to assembly code with less than 2 operands, such as jump
operation shown in Table II row 4.

Original assembly
add -0xDO0,%rax
lea -0x300(%rbp, %19, 4), %rax
jmp 3bc59
callq 3bc59 <bfd_zalloc>

Generalized assembly
add -0xIMM, %rax
lea -OxIMM(%rbp, %19, 4), %rax
jmp ADDR BLANK
callg ADDR <FUNC>

TABLE II
EXAMPLES OF GENERALIZATION.
As shown in Table II, we use regular expression to gener-

alize immediate numbers, function names and addresses. The
first two examples show how we treat immediate numbers.
Immediate numbers are either offset to a base pointer or a
value for arithmetic calculation. We replace these immediate
numbers with OxIMM. Note that we don’t touch the scale
factor of effective address since it is related to variable length.
The remaining 2 examples show how we treat jump and call
instruction. We replace target addresses with ADDR since they
only appear in the instruction context and don’t impact how we
interpret the usage of the variables. Unconditional jump often
suggests loop, conditional jump often suggests branch and call
suggests function call. If objdump cannot find function name,
its position is filled with a BLANK.

92

In our experiment, our generalization method would cover
over 99% of the instructions for newly come samples.

C. Embedding

To learn the representation of each VUC in the lower dimen-
sion, and retain the relationship with neighboring instructions
at the same time, we choose Word2Vec as our embedding
technique. The objective function of the method is as follows:

1 T
J(Q):Tz > logaP(InsiyslInsg) (1)

t=1 —m<j<m,j#0

where T is the number of VUC, Ins; denotes the target
instruction (with 1 operation and no more than 2 operands),
Ins,;; denotes the neighboring instructions, P(Ins.y;|Ins;)
represents the appearance possibility of Ins;,; when the target
instruction is Ins;. We let maximum distance m to be 5.

We directly use the gensim [27] library to train the
Word2Vec model, and it translates each input VUC into a
vector of fixed length which is 32 for CATL

V. PREDICTION MODELS
A. Multi-Stage Classifier

As we mentioned before, we develop a system called CATI
that can recover 19 types of variables from stripped binaries.
This covers all base types defined in C99 standard. We don’t
classify pointer to these different base types because it’s hard
to statically trace pointers. We also add some widely used
types according to our statistics. Nowadays, deep learning
techniques are powerful enough to distinguish 19 classes
within one model. But to make the model more interpretable
and accelerate the training phase, we train a multi-stage
classifier containing six different classifiers. To employ the in-
struction context as new features, we choose the convolutional
neural network (CNN) as our prediction model after several
empirical attempts. Each separate stage uses a different CNN
models with a similar structure but different parameters as
a classifier to infer a specific cluster of variable types. We
employ a common 2-layer CNN model (32-64) with a fully
connected layer (1024) to run the result.

As shown in Figure 5, we illustrate the multi-stage classifier
as a tree-based structure. In the first stage (Stage 1), the binary
classifier identifies whether the VUC belongs to a pointer
variable or not. VUCs tagged as pointer variables are pro-
cessed at Stage 2-1 and tagged as pointer to void,
pointer to struct, pointer to arithmetic. At
Stage 2-2, VUCs tagged as non-pointer variables will be
processed to be tagged as one of struct, bool, char,
float, int. Whether a variable has been tagged as char,
float, int, will finally be classified more detailed in Stage
3-1, Stage 3-2, Stage 3-3. Each stage is trained separately with
2-layered CNN with slightly different parameters.

In this paper, we have tried our best to classify as many
types as possible. We recover over 40 kinds of types listed
in C programming language. Here come some reasons for

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2020 at 04:23:09 UTC from IEEE Xplore. Restrictions apply.

arithmetic*

stage2-1 —
void*
[char >
—{_char stage3-1 =>[unsigned char »

vuC;
vuc, |
VUG,

stagel
>[float)—»<stage3-2 long double
~<Stage2-2

unsigned long int
unsigned long long int

unsigned short int

it g

| boal
struct

Fig. 5. Multi-stage classifier.

our decision to recover 19 of them. Firstly, we choose to
classify all of the types of non-pointer variables except union
because union has various behaviors that cannot be classified
into one class. Secondly, we divide the type of pointer into
three types: pointer to void, pointer to struct,
pointer to arithmetic. The first two types are easy
to think over. The appearance of the third type is because the
static-based approach cannot capture the run time behavior of
the variable, and the instant pointed by the variable cannot be
fixed. Therefore, we cluster all the basic variable types to a
set of the types called pointer to arithmetic. To the
best of our knowledge, we have achieved the largest amount
of variable types at present, and we cover all the types which
have been recovered by the previous works.

B. Prediction and Voting

After the multi-stage classifier is trained, we can use it to
predict the most possible type for each VUC extracted from
unseen stripped binaries and vote for the final result.

Firstly, we take the same measures as the training set
data for the binaries from the testing set: disassemble, locate
variables, extract VUCs, generalization, and embedding. Here,
we leverage IDA Pro to help us to disassemble the binary
code and locate the variables in every binary. The embedding
model is the one trained from the training set. Then, with
prepared variables V = {VUC;,VUC,,...,VUCx}, where
VUC; = {Ins;—10,..,Ins;—1,Ins;, Insit1, ..., Insit10}, we
input each VUC into the classifier to predict the result.

Here, we define the classifier of each stage as function
Su, such as S;_; representing the classifier of Stage 2-
1. Variable V' containing N VUCs is represent as V'
[VUC,,VUCs,...,VUCy]. V is a three-dimensional tensor,
with a size of N x L x E. N, L, E respectively represent the
number of VUC, length of VUC, length of embedding size.
Here, L and E are constants, which equal to 21 and 32.

93

We calculate the result of V' as follows,

Su(V) =2 (@3]

where Z is a matrix with size of N x C. C denotes the
number of classes in stage 7. Z;; denotes the confidence of ith
VUC classified to jth class, and Z;’;l Z;; = 1.0. To increase
the influence of result with high confidence, we come out a
solution with the following formula:

1.0
7zl =

Here, we enlarge the power of the result with high con-
fidence to dominate the final decision, and we do several
empirical experiments to set the threshold as 0.9. We make
the final decision of V' based on the confidence output of each
VUC. The final result is calculated as follows,

N N N
argmam(z Zi, Z AR Z Zle)
i=1 i=1 i=1

where, Zfil ZZ{J- denotes the total confidence of VUCs of V'
classified to class j, and the highest make the final decision.

if Zi; > 0.9

3

“

VI. IMPLEMENTATION

In this section, we present the implementation of our system.
CATT extracts the data flow of the target variable from stripped
binaries using IDA Pro [12]. We developed a python script that
uses IDA APIs to automatically achieve this. To annotate the
correct type for the training VUCs, we parse DWARF [26]
debug information from non-stripped binaries. After obtaining
the tracing information of each variable assisted by IDA
Pro, we implement a tree-like multi-stage classifier using the
machine learning package Keras [28]. Finally, we utilize a
python script to vote for the final result for each variable. For
the evaluation part, we use machine learning library scikit-
learn [29] which calculates the metrics for each stage.

All our experiments were conducted on a PC with 16GB
memory, 1 Intel i7-6700k CPU(4.0 GHz) and 1 NVIDIA GTX
1070 GPU with 8GB graphics memory.

VII. EVALUATION
A. Setup

Here, we describe our dataset and metrics for evaluation of
the performance of CATI in each aspect.

Data Set. We create a comprehensive training data set from
several open-source software projects. Here we enumerate
some projects of different categories: OS tools (GCC, core-
utils, binutils, etc), network programs (php, nginx, etc), com-
putationally intensive programs (xpdf, zlib, etc) and projects
like R and Python which integrate packages of different
categories. In total, 2141 binaries are used to train the models.
We choose popular and well-written projects so that it reviles
the distribution of types in reality. For the diversity of training
data, we build each project with different optimization levels (-
00 to -03), but all with the same compiler—GCC. The reason
for controlling the same compiler to compile the applications

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2020 at 04:23:09 UTC from IEEE Xplore. Restrictions apply.

bash bison cflow gawk grep gzip inetutils less nano R sed wget
P | 093 089 0.88 088 0.89 094 0.89 086 0.87 089 091 0.89
Stagel R [093 0.89 0.89 088 0.89 093 0.89 086 0.87 089 091 0.89
F1 | 093 0.89 0.88 088 0.89 093 0.89 086 0.87 089 091 0.89
P | 076 0.76 0.79 077 0.86 0.71 0.70 079 079 069 0.89 0.76
Stage2-1 R [0.68 0.76 0.79 0.78 0.87 0.70 0.71 070 079 070 0.89 0.73
Fl1 | 0.68 0.75 0.78 077 0.86 0.70 0.70 071 078 068 0.89 0.73
P | 091 089 0.81 082 0.88 091 0.77 093 0.87 087 0.89 083
Stage2-2 R [091 0.88 0.82 0.82 0.88 091 0.76 092 0.86 088 0.88 0.84
Fl | 09T 0.88 0.81 0.8 0.88 091 0.74 092 0.86 088 0.88 083
P | 088 092 0.92 0.81 0.81 093 0.88 094 079 092 0.84 08I
Stage3-1 R [0.80 0091 0.60 073 081 0.81 0.83 086 0.79 088 0.80 0.81
F1 | 083 091 0.68 076 0.81 0.84 0.85 088 079 089 0.81 08I
P 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00 - 0.99 - 1.00
Stage3-2 R [0.33 1.00 1.00 1.00 1.00 - 1.00 1.00 - 0.99 - 1.00
F1 [050 1.00 1.00 1.00 1.00 - 1.00 1.00 - 0.99 - 1.00
P | 091 0.84 0.87 073 075 0.77 0.76 094 071 084 075 0.74
Stage3-3 R [0.85 0.78 0.80 072 074 0.5 0.74 081 070 084 072 0.72
F1 | 088 081 0.83 072 074 0.74 0.75 086 070 084 072 072

TABLE III

VUC PREDICTION RESULT OF 12 APPLICATIONS

IN 6 STAGES MEASURED BY PRECISION(P), RECALL(R) AND F-1 SCORE(F1).

bash bison cflow gawk grep gzip inetutils less nano R sed wget
P | 095 092 0.92 092 091 096 0.94 088 0.89 092 093 092
Stagel R [095 092 0.92 091 091 096 0.94 087 0.87 092 093 092
F1 | 095 092 0.92 091 091 096 0.94 087 0.87 092 093 092
P | 076 074 0.79 071 0.87 0.76 0.73 079 079 074 0.89 0.75
Stage2-1 R | 0.64 0.71 0.76 072 085 0.5 0.70 065 077 070 0.88 0.67
Fl | 0.63 0.70 0.75 069 0.85 074 0.69 066 075 068 0.88 0.66
P | 092 092 0.92 0.87 092 096 0.89 096 090 089 093 089
Stage2-2 R [092 0.90 0.92 0.87 092 096 0.89 095 0.89 09 093 0.89
Fl | 092 0.90 0.92 0.86 092 096 0.89 095 0.89 09 093 089
P | 092 090 0.89 0.81 0.82 093 0.90 097 0.80 095 0.86 08I
Stage3-1 R [0.87 0.86 0.67 076 081 091 0.87 088 0.82 094 0.81 0.81
F1 | 089 0.87 0.71 077 0.81 092 0.89 09T 0.80 095 0.81 080
P | 000 1.00 1.00 .00 1.00 - 1.00 1.00 - 0.99 - 1.00
Stage3-2 R [0.00 1.00 1.00 1.00 1.00 - 1.00 1.00 - 0.99 - 1.00
F1 [0.00 1.00 1.00 1.00 1.00 - 1.00 1.00 - 0.99 - 1.00
P | 093 084 0.90 079 0.83 082 0.80 094 079 083 0.83 0.80
Stage3-3 R [091 0.83 0.86 0.8 0.82 0.80 0.80 086 0.78 087 0.81 0.78
F1 | 092 083 0.88 079 0.82 0.79 0.80 089 077 084 081 0.77

TABLE IV

VARIABLE PREDICTION RESULT OF 12 APPLICATIONS IN 6 STAGES AFTER VOTING MEASURED BY PRECISION(P), RECALL(R) AND F-1 sCORE(F1).

is that we want to focus on studying one compiler’s behavior.
Meanwhile, we believe that our prototype can transfer easily
to other compilers. To validate our idea, we do the additional
experiments on Clang which will be discussed detailly in
SectionVIII. With the help of IDA pro [12] and DWARF [26],
we successfully disassemble the binary program, leverage the
debug information to label the ground truth of each VUC, and
group VUC:s that belong to the same variable. Furthermore, to
test the prediction accuracy of CATI and compare with former
works, we carefully select some applications as a benchmark
which are different from the training set to prove the general
performance of our method.

Metrics. CATI is a machine learning-based method, so we
use three performance metrics commonly used to evaluate
machine learning classifiers: precision (P), recall (R) and F1
score. Formally, they are defined as follows:

TP

TP
P =
TP+ FP’

B _2*P*R
TP+ FN’~

R
P+ R

94

where TP is the true positives, FP is the false positives, FN
is the false negatives. Precision is the ratio of cases where
the predicted value is equal to the given value, which is the
closeness of the measurements to each class(i.e., the accuracy
ratio of discovered variables). Recall leads to the proportion
of correct predictions over the set of their class. F1 score is a
balance measurement that is calculated by precision and recall.
All three metrics are in the range of O to 1.

B. Evaluation

To objectively measure the performance of our type infer-
ence method, we assume the variable location of assembly
code is given for every binary. However, in general, we can
leverage the Variable Recovery part of DEBIN [1] to locate
the variable operations in assembly code whose accuracy can
achieve about 90%.

Evaluation on Test Set. Firstly, we discuss the performance
of the multi-stage classifier on predicting the most likely type
of each VUC. The result of 12 different applications has shown

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2020 at 04:23:09 UTC from IEEE Xplore. Restrictions apply.

Type SI-R S2-R S3-R ACC Support | cnt-same cnt-all c-rate

bool 1.00 0.76 1.00 0.76 1400 1.38 5.37 25.68%

struct 091 0.61 1.00 0.58 6874 3.60 5.46 65.85%

char 099 050 093 045 2697 1.51 421 35.77%

unsigned char 1.00 076 065 0.56 404 2.40 5.11 47.05%

float 1.00 0.88 088 0.88 8 1.22 4.44 27.50%

double 099 091 1.00 091 13972 4.25 6.24 68.02%

long double 1.00 098 057 057 153 2.90 6.30 45.97%

enum 099 099 0.11 0.11 2654 1.18 4.92 24.03%

int 099 098 095 093 38591 3.10 5.81 53.36%

short int 1.00 078 0.15 0.13 46 0.81 5.22 15.45%

long int 0.71 097 072 0.57 5051 3.17 5.97 53.14%

long long int 0.57 1.00 0.00 0.00 21 1.23 3.00 41.03%

unsigned int 099 097 028 027 1808 4.72 6.72 70.16%

short unsigned int 1.00 0.80 0.74 0.67 70 1.02 4.17 24.54%

long unsigned int 0.61 096 0.85 0.50 6188 2.43 5.89 41.29%

long long unsigned int | 0.71 0.81 0.00 0.00 21 2.57 7.86 32.73%

void* 0.91 0.18 1.00 0.18 2820 3.06 4.88 62.57%

struct™® 095 0.92 1.00 0.88 36876 2.01 5.02 40.09%
TABLE V

EVALUATION RESULT OF EACH VARIABLE TYPE.

in Table III. For Stage 1 to Stage 3-3, the table shows the
performance of classifying pointer and non-pointer, subclass
of pointers, subclass of non-pointer, subclass of type char,
subclass of type float, and subclass of type int. P, R,
F'1 separately represents precision, recall ,and F1-score which
are usual metrics in the machine learning field. Stage 1 shows
the best performance overall applications. It is easy to come
out that the features to distinguish pointers and non-pointers
are obvious. The pattern of operations and operands used
by pointer and non-pointers can be widely divergent, which
has employed by previous work to extract rules. Stage 2-
1 doesn’t perform well on these tasks, where the average
measure indexes are about 0.75. Especially, application R
behaves the worst on this stage, which has the most amount
of VUCs tagged as a pointer. The reasonable excuse of the
performance results in stage 2-1 is that the behavior of pointer
variables is too uncertain to capture which cannot be easily
inferred by the instruction context. While in stage 3, stage
3-1 and stage 3-3 seem to do well in classifying the types,
for only two types (char and unsigned char) making up
stage 3-1 and types in int family behaving differently on
the usage of registers. The registers storage different lengths
of int family variables which are very different, let alone
whether the variables are signed or unsigned. It is interesting
to notice that stage 3-2 has a different result with other stages.
Applications gzip, nano, and sed do not have float family
variables. Besides application R, the rest of 8 applications
occupy less than 200 VUCs belongs to float. Even some
of the applications only have 1 VUC tagged as a float.
Fortunately, even the data set is unbalanced in stage 3-2,
application R still achieves a considerable performance to
classify over 10,000 £1loat family variables which are owed
to the usage of instruction context.

To evaluate the performance of CATI in the real world,
we present the result after the voting procedure in Table IV.
Each data in Table IV is one to one corresponding to the data

95

in Table III. After voting, the wrong case may be adjusted
to the right class by the rule of the minority obeying the
majority. In Stage 1, Stage 2-2, Stage 3-1 and Stage 3-3, the
performance of all the applications has a great improvement
compared to Table III. However, the result of Stage 2-1 and
3-2 has a decrease. In Stage 2-1, each VUC is classified to
most likely type, but the diverse behavior of pointer family
variables puzzling the voting mechanism to make an uncertain
decision. In Stage 3-2, application bash only has 1 related
variable which consists of 3 VUCs, of which only 1 VUC is
correctly classified. Therefore, the result comes to zero.

vucC Variable

Accuracy Support | Accuracy Support

bash 0.70 79767 0.73 12820
bison 0.69 20863 0.69 4095
cflow 0.69 9133 0.72 1547
gawk 0.66 53605 0.68 8017
grep 0.72 23254 0.76 3563

gzip 0.67 4088 0.75 725

inetutils 0.62 130130 0.68 21183
less 0.66 7633 0.67 1563
nano 0.65 21845 0.67 3703
R 0.70 616297 0.72 93495
sed 0.74 18246 0.78 2637
wget 0.65 38571 0.66 6426

Total 0.68 1023432 0.71 159774

TABLE VI

EVALUATION RESULT ON EACH APPLICATIONS ON THE GRANULARITY OF
VUC AND VARIABLE.

To thoroughly evaluate the system on the pipeline, we test
the pipeline result of each application. Table VI shows the
result of all applications in the test set. Weighted accuracy of
all applications on the granularity of VUC is 0.68, which is test
on over more than 1,000,000 VUCs. And Weighted accuracy
of all applications on the granularity of variable is 0.71, which
is test on over more than 150,000 variables. Here, our system
CATT achieves a considerable result of variable classification
of 19 types, and the result after voting mechanism increases by
about 0.03 on the metric of accuracy. Application sed achieves

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2020 at 04:23:09 UTC from IEEE Xplore. Restrictions apply.

the highest accuracy (0.78) of all applications. And even the
worst case of wget achieves an accuracy of 0.66.

Comparison with DEBIN. We set up another experiment
on CATI to compare with the state-of-art method DEBIN [1].
To make the competition as enough fair as possible, we set
the preparation work as similar as possible with DEBIN. We
randomly select 300 binaries from 830 Linux Debug Symbol
Packages (data source of DEBIN), compiled in x86_64 archi-
tecture, to fulfill the same type inference mission in DEBIN —
classify 17 different types: struct, union, enum, array,
pointer, void, bool, char, short, int, long and
long long (both signed and unsigned for the last
five). Our system CATT has a better performance than DEBIN
in a similar situation to finish the same task, in which we
achieve about 11% higher on accuracy (0.84 V.S. 0.73). As
expected, CATI performs better in the new settings, because
we enrich the features of each variable which overcome the
problem of uncertain samples, and we make the final decision
by voting for traceable instructions.

Understanding the Clustering Phenomenon. To validate
the discovery of the Same type variable clustering phe-
nomenon, we study the result of each variable which is shown
in Table V. Column 2 to 5 separately represents the recall
of Stage 1, Stage 2-2, Stage 3 and weighted average final
result. Cnt-same, cnt-all and c-rate in column 7 to 9 separately
represents the average number of variable instructions in one
VUC which have the same variable type with the target
variable, the average number of variable instructions in one
VUC, and the ratio which is calculated by the former two
columns. Type double, int, unsigned int perform well
in all stages, which can be explained by the high ratio of
same type variable clustering shown in Column 9. It is worth
to notice that, type bool has good performance with a low
clustering ratio, while type struct has poor performance
with a high clustering ratio. Our explanation is that variables
with bool type have comparatively simple usage pattern and
their instructions are not complex. To contrast, variables with
struct type consist of many members, therefore their usages
are really diverse. Unfortunately, both type long long and
long long unsigned int do not get over Stage 3-3,
even though the clustering rate is considerable, of which the
reason maybe these kinds of variables are few. Last but not
least, the total recall of each variable is roughly positively
correlated with the clustering ratio.

To find the decisive factor of prediction result, we bring in
a new measurement index e, which is calculated as follows:

Su(R(VUC,, k) s
S (VUC,))
where S, (VUC;) denotes the confidence of VUC; pre-

dicted in Stage u, k denotes the kth position of the instruction

in VUC}, and j denotes the jth VUC in the data set 7.

Function R occludes one specific instruction. As shown in

formula (5), R occludes the kth instruction in VUC; with

BLANK. The result of S,,(R(VUC}, k)) indicates the con-

fidence of VUC); in Stage i without the information of kth

€ = Jkell,21),j €T

96

1095679 movqg $0x0,0xa8 (%rsp) struct*]

0.54245 je 4179f5 <map_html_tags+0x255>
lea 0x120(%rsp) ,%rax _char |

1.02361 movslg %esi,%rsi

0.54310 | movl $0x100,0xb8 (%rsp) Struct |

0.83318 lea (%rdi,%rsi,1),%ri15

0.61051 | movb $0x0,0xc0(%rsp) Struct

0.49985 | movl $0x100,0xd0(%rsp) Struct

0.37073 mov %rax,0xb0(%rsp) struct

0.85065 | mov %rax,0xc8(%rsp) struct
:> 0.57795 lea 0x220(%rsp) ,%rax

0.97451 movb $0x0,0x18 (%rsp)

0.96613 [movl $0x8,0x40(%rsp) int |

0.52061 mov %rdi,%rbp

1.04395 [mov %rax,0x30(%rsp) struct*|

0.97986 mov %ril5,%rdx

1.04600 mov $0x3c,%esi

0.84242 mov %rbp,%rdi

0.65618 sub %rbp,%rdx

0.73875 ‘ movl $0x0,0xbc (%rsp) struct ‘

0.55442 callq 4044d® <memchr@plt>

a) Importance Visualization

0.30% 0.64% 1.32% 2.12% 2.62% 3.38% 4.10% 5.20% 6.54%
0.64% 1.38% 1.80% 2.70% 3.18% 3.84% 4.78% 5.82% 7.54%
0.22% 0.68% 1.28% 2.00% 2.56% 3.26% 3.82% 5.18% 6.58%
0.32% 0.74% 1.28% 1.86% 2.82% 3.22% 4.34% 5.44% 7.20%
0.94% 1.32% 1.92% 2.60% 3.22% 3.90% 4.82% 5.84% 7.62%
0.58% 1.46% 2.04% 2.66% 3.10% 3.54% 4.32% 5.46% 7.30%
0.40% 0.90% 1.46% 2.32% 3.12% 3.70% 4.40% 5.28% 7.70%
0.88% 1.52% 2.36% 2.98% 3.60% 4.62% 5.88% 6.80% 8.46%
0.84% 1.62% 2.42% 3.46% 4.50% 5.14% 5.80% 7.08% 8.44%
0.74% 1.70% 2.24% 3.00% 3.42% A4.14% 4.68% 6.06% 7.50%
6.02% 8.58% 11.66% 14.04% 16.82% 19.72% 23.60% 27.82% 356.46%
1.24% 1.74% 2.70% 3.46% 4.12% 4.98% 5.80% 7.06% 9.34%
0.20% 0.82% 1.40% 1.88% 2.46% 3.18% 3.88% 5.34% 7.20%
0.58% 1.40% 1.86% 2.64% 3.58% 4.54% 5.34% 6.78% 8.38%
0.54% 1.14% 1.80% 2.58% 3.30% 3.88% 5.14% 6.16% 7.76%
0.64% 1.46% 1.80% 2.30% 2.84% 3.58% 4.50% 5.60% 7.08%
0.66% 1.58% 2.06% 2.66% 3.58% 4.42% 5.54% 6.64% 8.66%
0.74% 1.72% 2.18% 2.80% 3.40% 4.28% 4.88% 5.94% 7.08%
0.74% 1.08% 1.68% 2.48% 3.40% 4.10% 4.76% 5.78% 7.52%
0.78% 1.42% 2.70% 3.16% 4.06% 4.62% 5.50% 6.06% 7.72%
0.54% 1.08% 1.80% 2.16% 2.88% 3.70% 4.48% 5.34% 6.82%

b) Importance Distribution of Test Data
Fig. 6. Importance visualization and distribution of example case.

instruction. €, is an index ranged in (0, +00) to measure the
importance of kth instruction. A smaller value of ¢ indicates
more significance of the instruction.

As shown in Figure 6 a), the left side is the result of €
of each instruction. It is obvious that the variable instructions
with the same variable type play a more important role in
type inference. However, the instruction in column 3 operates
a variable with type char, which seems to take the lead of
prediction with a small e. The reasonable explanation of this
situation is that the representation of column 3 is the same
as the central instruction (column 11). It is easy to guess
that the model regards these two instructions as the same
variable’s operation. As shown in Figure 6 b), the heat map
reflects the statistical result of € for each instruction among
our test data. Each row represents the location of instructions
in VUCs, and each column represent the rate of instructions
whose ¢ is ranged in (0,1), (0.1,1), ..., (0.8,1), (0.9,1). Take
the percentage in column 11, row 5 as an example, it denotes
that 16.82% of central instructions have e ranged in (0.5,1).
The tendency of the heat map indicates that the model is
able to pay attention to the central instruction which operates

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2020 at 04:23:09 UTC from IEEE Xplore. Restrictions apply.

the target variable, and the closer instructions have a more
positive influence on the prediction result. To contrast, we find
the next-door neighboring instructions already vary a lot from
the central instruction in all rows, not to speak of the rest of
the instructions. The distribution indicates that the method of
feature extraction brings in noises in some aspects.

At last, we further investigate the significance of VUC
to infer variable types, and we do the following additional
experiments here.

Training and Inference Speed. It takes about two hours to
train the classification models based on CNN for six stages,
and it takes about three hours to train the Word2Vec model.
The extracting phase for test data lasts about 24 minutes,
and prediction time (including inference and voting) is about
5 minutes. Each binary takes about 6 seconds on extraction
and prediction. Fortunately, the speed of CATI is acceptable,
because the system is based on static analysis for binaries. It
would be possible bringing in some dynamic analysis in our
future work to increase the accuracy of CATI.

VIII. DISCUSSION

We mainly work on the binaries compiled from GCC
because it is more widely used and previous works are all
based on GCC. After the thorough experiment on the data set
generated from GCC to infer the variable type from stripped
binaries, we still need to confirm that our prototype can work
on other mainstream compilers, like Clang.

In this work, we concern about the method of locating
variables and inferring the types of them from stripped bi-
naries, but we are not sure whether the method is compiler
sensitive. We want to deeply investigate whether the behavior
of variables in source code compiled to a low-level represen-
tation (e.g., binary code) is highly correlated to its compiler.
To validate our hypothesis that our method is transferable,
we finish the following experiments. Except for the compiler
which we substitute with Clang, the rest of the experimental
setups are the same as the settings in section VII. We train new
models with the binaries compiled from Clang and test the
model with the same applications as before. The performance
of 6 classifiers is shown in Table VIII.

Stage Precision Recall Fl-score
Stagel 0.95 0.95 0.95
Stage2-1 0.86 0.87 0.86
Stage2-2 0.94 0.95 0.94
Stage3-1 0.88 0.88 0.88
Stage3-2 0.99 0.99 0.99
Stage3-3 0.86 0.87 0.86
TABLE VII

EVALUATION RESULT OF APPLICATIONS COMPILED FROM CLANG.

According to the table, we can see that all 6 classifiers
achieve a good result in 3 stages. The total accuracy of all
variables in our test applications is 82.14%, which means that
most of these variables compiled from Clang can be correctly
classified in all stages. The transformed model can well solve
the type inference problem in the field of Clang. Hence, we
can conclude that the design of the prototype is transferable.

97

What’s more, to make the system more complete, we try
to set up a classifier before our tree-based variable type
classifiers to identify the scatter binaries from which compiler.
For different register usages between GCC and Clang, we
successfully train a model with 100% accuracy which is just
used VUCs exactly from previous experiments.

Here, the results indicate that the prototype is transferable
between different compilers, even though we still need to
identify the source compiler of stripped binaries. We also
find different compiler options may influence inferring types,
which will lead us to our future work.

IX. RELATED WORK

In this part, we introduce some works closed to us.

Existing Works. Some previous works focus on variable
recoveries, such as DIVINE [25]. But we leverage the tech-
nique from Hex-Rays to avoid this problem and concentrate
more on type inference. For type inference, REWARDS [16]
and TIE [13] really perform well in the rule-based method and
get a considerable result. ELKAVYA [30] leverages machine
learning to identify 7 types of functions. In recent years, some
works try to distinguish variable types by machine learning
methods. Xu [18] and Maier [22] have successfully identified
the part of variable types. The former employs Support Vector
Machine (SVM), and the latter employs N-grams. DEBIN [1]
accomplished the mission of variable recovery, type recovery,
and name recovery at the same time with the help of Con-
ditional Random Field. To the best of our knowledge, CATI
is the first system that takes the problem of type inference
as text classification with the help of instruction context and
overcomes the challenge of uncertain samples.

Approaches for Binary Analysis. There is always a trade-
off between static analysis and dynamic analysis in the field
of binary analysis. Under the situation of our work, some
researchers employ static analysis [2], [15], [31], [32] to
pursue the code coverage, while others utilizing dynamic
analysis [16], [33], [34] to trace the target on the execution
time. Intuitively, some works propose hybrid approaches to
make the best of both static and dynamic methods. However,
traditional approaches seem to reach the end, and machine
learning approaches are well adapted to the security field in
time. Especially, the strong mapping ability of machine learn-
ing helps experts to solve many problems in binary analysis.
With the help of deep learning, we can find some connections
between binaries and source code, which is usually invisible
to the human. It is natural that with the development of large
amounts of code, some tasks achieve a satisfying result, such
as malware classification [35]-[37] and function identification
[19], [30], [38].

Our work does not directly mix new approaches to reach
better performance, but we utilize the advantage of machine
learning to overcome the partial weakness of static analysis.
We employ static analysis for the reason of its efficiency
and code coverage, and we try our best to bring in extra
information which may assist to do the prediction.

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2020 at 04:23:09 UTC from IEEE Xplore. Restrictions apply.

X. CONCLUSION

We present a novel approach for inferring the variable type
from stripped binaries. To solve the problem of orphan vari-
ables and uncertain samples, we leverage a new feature called
VUC to transform the representation of variables which is
inspired by our discovery — same type clustering phenomenon.
To validate our hypothesis, we collect a comprehensive data
set to establish a multi-stage classifier that is trained by
convolutional neural networks (CNN).

Our system, called CATI, uses CNN models and a voting
mechanism to infer variable types from unseen stripped bina-
ries. The experiment of CATI shows that the system is more
accurate than previous works in different aspects. As a new
feature, VUC really plays a crucial part in our work to improve
the classification result.

ACKNOWLEDGMENT

We would like to thank our shepherd Nuno Neves and
the anonymous reviewers for their helpful feedback. We are
grateful for Yifei Huang’s contribution on polishing the paper.
This work was supported in part by grants from the Chinese
National Natural Science Foundation (NSFC 61272078).

REFERENCES
[1] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin:
Predicting debug information in stripped binaries,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 1667-1680.
A. Prakash, X. Hu, and H. Yin, “vfguard: Strict protection for virtual
function calls in cots c++ binaries.” in NDSS, 2015.
C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and randomization
for binary executables,” in 2013 [EEE Symposium on Security and
Privacy. 1EEE, 2013, pp. 559-573.
M. Zhang and R. Sekar, “Control flow integrity for {COTS} binaries,”
in Presented as part of the 22nd {USENIX} Security Symposium
({USENIX} Security 13), 2013, pp. 337-352.
S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient
cross-architecture identification of bugs in binary code.” in NDSS, 2016.
J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow, “Leveraging
semantic signatures for bug search in binary programs,” in Proceedings
of the 30th Annual Computer Security Applications Conference. ACM,
2014, pp. 406-415.
U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” arXiv preprint
arXiv:1808.01400, 2018.
N. D. Bui, L. Jiang, and Y. Yu, “Cross-language learning for program
classification using bilateral tree-based convolutional neural networks,”
in Workshops at the Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.
S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static rep-
resentation robustness for binary clone search against code obfuscation
and compiler optimization,” in Asm2Vec: Boosting Static Representation
Robustness for Binary Clone Search against Code Obfuscation and
Compiler Optimization. 1EEE, 2019, p. 0.
B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, “adift:
cross-version binary code similarity detection with dnn,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 667-678.
V. Jain, S. Rawat, C. Giuffrida, and H. Bos, “Tiff: Using input type
inference to improve fuzzing,” in Proceedings of the 34th Annual
Computer Security Applications Conference. ~ACM, 2018, pp. 505—
517.
“IDA Pro,” https://www.hex-rays.com/.
J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineer-
ing of types in binary programs.” in NDSS, 2011.

[2]
[3]

[4]

[5]
[6]

[71

[8]

[9

(10]

(11]

[12]
[13]

98

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

26
27
28
[29
[30

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua, “Scalable
variable and data type detection in a binary rewriter,” ACM SIGPLAN
Notices, vol. 48, no. 6, pp. 51-60, 2013.

C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “Vtint: Protecting
virtual function tables’ integrity.” in NDSS, 2015.

Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proceedings of the 11th Annual
Information Security Symposium. CERIAS-Purdue University, 2010,
p. 5.

I. Haller, A. Slowinska, and H. Bos, “Mempick: High-level data structure
detection in c/c++ binaries,” in 2013 20th Working Conference on
Reverse Engineering (WCRE). 1EEE, 2013, pp. 32-41.

Z. Xu, C. Wen, and S. Qin, “Learning types for binaries,” in Interna-
tional Conference on Formal Engineering Methods. — Springer, 2017,
pp. 430-446.

T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“{BYTEWEIGHT}: Learning to recognize functions in binary code,”
in 23rd {USENIX} Security Symposium ({USENIX} Security 14), 2014,
pp. 845-860.

D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary
analysis platform,” in International Conference on Computer Aided
Verification. ~ Springer, 2011, pp. 463-469.

J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” 2001.
A. Maier, H. Gascon, C. Wressnegger, and K. Rieck, “Typeminer:
Recovering types in binary programs using machine learning,” in In-
ternational Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2019, pp. 288-308.

D. Zeng and G. Tan, “From debugging-information based binary-level
type inference to cfg generation,” in Proceedings of the Eighth ACM
Conference on Data and Application Security and Privacy. ACM,
2018, pp. 366-376.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111-3119.

G. Balakrishnan and T. Reps, “Divine: Discovering variables in executa-
bles,” in International Workshop on Verification, Model Checking, and
Abstract Interpretation. Springer, 2007, pp. 1-28.

“The DWARF Debugging Standard.” http://dwarfstd.org/.

“gensim,” https://radimrehurek.com/gensim/.

“Keras,” https://www.tensorflow.org/guide/keras.

“scikit-learn,” https://scikit-learn.org/.

Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can
learn function type signatures from binaries,” in 26th USENIX Security
Symposium, 2017, pp. 99-116.

D. Dewey and J. T. Giffin, “Static detection of c++ vtable escape
vulnerabilities in binary code.” in NDSS, 2012.

M. Noonan, A. Loginov, and D. Cok, “Polymorphic type inference for
machine code,” in ACM SIGPLAN Notices, vol. 51, no. 6. ACM, 2016,
pp. 27-41.

A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, T. Holz,
H. Bos, E. Athanasopoulos, and C. Giuffrida, “Marx: Uncovering class
hierarchies in c++ programs.” in NDSS, 2017.

T. Rupprecht, X. Chen, D. H. White, J. H. Boockmann, G. Liittgen, and
H. Bos, “Dsibin: identifying dynamic data structures in c/c++ binaries,”
in Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. 1EEE Press, 2017, pp. 331-341.

J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables
in the wild,” in Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2004, pp.
470-478.

R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, S. Dolev,
and Y. Elovici, “Unknown malcode detection using opcode representa-
tion,” in European conference on intelligence and security informatics.
Springer, 2008, pp. 204-215.

M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining
methods for detection of new malicious executables,” in Proceedings
2001 IEEE Symposium on Security and Privacy. S&P 2001. 1EEE,
2000, pp. 38-49.

E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 611-626.

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2020 at 04:23:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

