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Abstract. Deep neural networks (DNN) have been recently shown to be
susceptible to a particular type of attack possible through the generation
of particular synthetic examples referred to as adversarial samples. These
samples are constructed by manipulating real examples from the training
data distribution in order to “fool” the original neural model, resulting
in misclassification of previously correctly classified samples. Addressing
this weakness is of utmost importance if DNN is to be applied to critical
applications, such as those in cybersecurity. In this paper, we present
an analysis of this fundamental flaw lurking in all neural architectures
to uncover limitations of previously proposed defense mechanisms. More
importantly, we present a unifying framework for protecting deep neu-
ral models using a non-invertible data transformation–developing two
adversary-resistant DNNs utilizing both linear and nonlinear dimension-
ality reduction techniques. Empirical results indicate that our framework
provides better robustness compared to state-of-art solutions while hav-
ing negligible degradation in generalization accuracy.

Keywords: deep neural network · adversarial sample defense · non-
invertible data transformation

1 Introduction

DNN has been applied to various critical fields such as medical imaging [2],
self-driving cars [11] and malware detection [5, 18, 23]. However, recent work[15,
20] uncovered DNNs are vulnerable to adversarial sample – a synthetic sample
generated by modifying a real example with imperceptible perturbations but
causing a target DNN model to believe it belongs to the wrong class with high
confidence.

To mitigate the aforementioned kind of attack, previous defenses [3, 12, 14]
generally follow the basic idea of adversarial training in which a DNN is trained
with both samples from the original data distribution as well as artificially syn-
thesized adversarial ones. A recent unification of previous approaches [16] showed
that they were all special cases of a general, regularized objective function Data-
Grad. However, because the adversarial samples space is unbounded, this frame-
work is still vulnerable to a certain type of adversarial sample. To be specific,
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as we will show later in Section 5, these defense can be easily bypassed if an
attacker generate adversarial samples from the network trained with DataGrad
(i.e., post-defense model).

In this paper, we present a new defense framework that increases the dif-
ficulty for attackers to craft adversarial samples from both the original DNN
and the post-defense model. At a high level, we integrate an data transform
layer in front of a DNN model, which transform an input sample into an latent
representation before being inputted into the DNN. Technically speaking, this
data transformation layer employs a non-invertible dimensionality reduction ap-
proach which increases the computational cost of mapping an adversarial sample
generated from the latent space back to the input space. Evaluation results on
MNIST data set demonstrate an non-invertible data transformation layer im-
proves the robustness of a DNN and preserves the classification performance on
clean testing samples. In summary, we make the following contributions:

– We propose a comprehensive framework that makes a DNN model resistant
to adversarial samples by integrating an input transformation into the model.

– We develop two new defense mechanisms by injecting different dimensional
reduction methods into the proposed framework.

– We theoretically and empirically evaluate the DNN models, showing that
our new defense framework is resistant to adversarial samples.

2 Existing Defences

The existing defense mainly falls in to the following categories: 1) augmenting
the training set and 2) enhancing model complexity. As is mentioned in Sec-
tion 1, most of the defenses augment the training set with a group of adversarial
samples [1, 4, 16, 22] and retrain the model with the augmented data (i.e., adver-
sarial training). These defenses can be viewed as adding a regularization term to
a DNNs loss function [16], which penalizes the subspace where adversarial sam-
ples lies in. Another line of works building defences by increasing the complexity
of a DNN and improve the tolerance of complex DNN models with respect to
adversarial samples generated from simple DNN models. For example,[17] devel-
ops a defensive distillation mechanism, which trains a DNN from data samples
that are distilled by another DNN. By using the knowledge transferred from
the other DNN, the learned DNN classifiers become less sensitive to adversarial
samples. Similar to [17], [9] proposed stacking an auto-encoder together with a
normal DNN.

Though the above approaches, both from data augmentation and model com-
plexity perspectives, have proven effective in handling samples generated from
normal adversarial DNN models, they do not handle all adversarial samples. In
light of this, we propose a framework that blocks the gradient flow from the out-
put to input variables, a solution that prove effective even when the architecture
and parameters of a given a DNN are publicly disclosed.
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3 Data Transformation Enhanced DNN Framework

In this section, we introduce our frameworks design goals and choose a particular
type of data transformation that will fulfill these goals.

3.1 Design Goals

As is mentioned in Section 1, we build a novel DNN framework by integrating a
data transformation layer before an ordinary DNN. And we want our framework
to achieving the following goals:

– It has minimal impact on the performance of a DNN model when legitimate
samples are seen.

– It increases the computational cost of finding a group of adversarial samples
that can bypass the post-defense model.

– it is independent from the subsequent DNN model.

3.2 Framework Overview

As is mentioned before, to generate an adversarial samples from our framework,
an attack need to map an adversarial sample generated from the latent space
back to the input space. This indicates that if a selected data transformation
is Non-invertible, an attacker is not able to generate adversarial samples. To
be specific, non-invertible data transformation stands for the following proper-
ties: (1) inverting the data transformation is computationally too complex to
be tractable; or (2) inverting the data transformation will cause significant re-
construction error. Besides non-invertible, the data transformation layer should
preserve the semantic meanings for an original input, which will ensure the clas-
sification of our framework. Last but not least, the transformation should also be
computationally efficient and more importantly, incremental. The latter require-
ment is essential given that any data transformation method must be capable of
handling unseen samples as they are presented. Otherwise, the data transforma-
tion will need to be retrained, and subsequently, the DNN on top of the newly
retrained transform layer.

Dimensionality reduction is one particular data transformation mechanism
that satisfies these design objectives. First, dimensionality reduction methods
are often designed to preserve at least the most important aspects of the orig-
inal data. Second, dimensionality reduction can serve as a filter for adversarial
perturbations when a DNN is confronted with adversarial samples generated
from the post-defence models. Third, dimensionality reduction helps reduce the
dimensionality of the input distribution that is fed into the DNN. Finally, it is
easier to develop non-invertible data transformation methods, since recovering
higher dimensional data from lower dimensional data is difficult. The following
sections introduce details of two developed defence mechanisms using different
non-invertible dimensional reduction methods.
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4 Data transformation enhanced DNNs

4.1 Designed Linear Mapping (DLM) DNN

We first propose a novel linear dimensional reduction method, which stems from
principal component analysis (PCA). And we provide a theorem that places the
lower bound on the reconstruction error.

PCA is computationally efficient and easy to implement [13]. Additionally, it
preserves critical information by finding a low-dimensional subspace with max-
imal variance. In another word, it is convenient for an attacker to generate
adversarial examples by mapping the low dimensional data back to the high
one.

PCA preserves meaningful features of the original data when mapping them
to a lower dimension. Given a data matrix X ∈ Rn×p, the transformation matrix
W can be obtained by solving the optimization function as:

arg min
Y,W

1

2

∣∣∣∣∣∣X − YWT
∣∣∣∣∣∣
F

(1)

where W ∈ Rp×q, WTW = Iq and Y ∈ Rn×q. According to the Eckart-Young
Theorem [7], the optimal solution is obtained when W consists of the q largest
eigenvalues of XTX. Therefore, the low dimensional mappings can be computed
as follows:

Y = XW (2)

Accordingly, we can approximately reconstruct the high dimensional X from the
transformed data Y by:

X̂ = YWT (3)

which represents the process of reconstructing high dimensional approximation
using only low dimensional mappings and a transform matrix. Therefore, using
PCA alone for a data transformation doesn’t satisfy the non-invertible criteria
we introduced in Section 3.

To deal with this problem and yet preserve computational efficiency, we equip
PCA with our first non-invertible characteristic. To do this, we propose a novel
dimension reduction method we call a designed linear mapping (DLM). This
design ensures that the PCA operation continues to preserve the critical infor-
mation while the column-wise highly correlated transformation matrix guaran-
tees that inverting the DLM will generate significant reconstruction error. To
explain the consequence of this, we now introduce DLM in detail and examine
its properties.

Much as in (2), we shall formally define DLM as:

Y = XCT + ω, (4)

where X ∈ Rn×p, Y ∈ Rn×pc . ω ∈ Rn×pc denotes a normally distributed noise
matrix, where each entry of ω generated from a normal distribution N(0, σ2).
C ∈ Rpc×p is the transformation matrix obtained by following equation:

C = [B;A], (5)
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where C is constructed by combining a loading matrix B ∈ Rpb×p obtained via
PCA with a designed matrix A ∈ R(pc−pb)×p, of which all columns are highly cor-
related. This combination integrates PCA’s information-preserving effects into
our DLM. As such, the lower dimensional projection Y can provide a better
representation of the original X.

Since the DLM described by (4) has a simple linear form, we estimate re-
construction X̂ for X using high-dimensional linear regression [19] (we omit
calculation details due to space constraints). According to Theorem 1 in [19], we
can obtain a lower bound of the reconstruction error, which is the L2 norm of
the difference between X and X̂ as shown in (6):(

L2(X, X̂)
)2
≥ κ0 σ

2 s log(p/s)

pc
, (6)

where s denotes the sparsity of X. κ0 is a constant whose value depends closely
on the data set. Therefore, given a certain set of data, any linear transformation
method is restricted by a constant lower bound calculated according to (6). In
addition, according to Theorem 2 in [19], there also exists an upper bound of
the reconstruction error as follows:(

L2(X, X̂)
)2
≤ f(C)

s log(p)

pc
, (7)

where f(C) is a function of C. According to [19], the upper bound of the re-
construction error depends on both the data transformation matrix C and noise
ω. When C is a an independent correlation matrix, as in PCA, then the up-
per bound will approach the aforementioned lower bound. However, since we
specifically design C to be highly correlated, the upper bound will be signifi-
cantly larger than the lower bound [6, 8], and thus result in a larger range for
the reconstruction error.

4.2 Dimensionality Reduction by Learning an Invariant Mapping
(DrLIM) DNN

When adversarial samples are processed by normal DNN models, the decisions
made in a lower dimensional space are completely different from those made for
legitimate samples, even though adversarial samples are highly similar to legit-
imate ones. Therefore, we intend to employ a dimensionality reduction method
that preserves the similarity of high dimensional samples in their lower dimen-
sional mappings. Furthermore, our method needs to be capable of extracting
critical information contained in the original data. Since the training of a DNN
is already computationally intensive, our approach needs to be incremental in
order to avoid the need for retraining the DNN.

Because of these considerations, we employ the dimensionality reduction
method DrLIM proposed in [10]. DrLIM is specifically designed for preserving
similarity between pairs of high dimensional samples when they are mapped to
a lower dimensional space. As a result, there is a significantly lower chance that
an adversarial sample acts as an outlier in the lower dimensional space, since
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its mapped location is bounded by the mapped locations of similar, legitimate
samples. DrLIM can also be used in an online setting.

More importantly, we theoretically prove that inverting DrLIM is an NP-
hard problem. Therefore, DrLIM is suitable for our framework in that it satisfies
the second characteristic of non-invertiblity defined in Section 3. But first, we
briefly review DrLIM.

DrLIM consists of a convolutional neural network (CNN) model designed for
optimizing the cost function:

P∑
i=1

L
(
W, (Y,Xi1 , Xi2)i

)
, (8)

whereW denotes the coefficients.Xi1 andXi2 denote the ith pair of input sample
vectors with i = 1 . . . P . Y is a binary label assigned to each pair of samples,
with Y = 0 denoting a similar pair of Xi1 and Xi2 , and Y = 1 for dissimilar
pairs. Any prior knowledge can be applied to representing dissimilarity. Let the
loss function for measuring the cost for each pair be defined as:

L (W,Y,X1, X2) =(1− Y )
1

2

(
D(X1, X2)

)2
+
Y

2
{max

(
0,m−D(X1, X2)

)
}2, (9)

where D(X1, X2) = ‖G(X1)−G(X2)‖2 is the Euclidean distance measured be-
tween the output lower dimension mapping G(X1) and G(X1) for the sample
pair X1 and X2. Let m be a predefined constant which indicates whether all
dissimilar pairs are pushed or pulled towards to maintain a constant distance m.

Since G represents a mapping by the CNN to enable the recovery of high
dimensional data from the low dimensional data G(X), we need to first get
G−1(X). For the forward pass of a conventional neural network, it is not guar-
anteed that the weight matrices are invertible [24], implying that information
lost during pooling cannot be recovered. Thus, it is very difficult to compute
G−1(X) and recover the original data from a low dimensional representation.
Since inverting the CNN is nearly impossible, one option is to reconstruct orig-
inal X according to (9) given W and Y . In the following, we demonstrate that
even this approach can be mapped to a NP-hard problem.

As discussed before, the most important property of DrLIM that allows
it to fit into our framework is that it is provably non-invertible. Assuming
G(X) takes a simple linear form of G(X) = WX, then we have D(X1, X2)2 =
(X1 −X2)TWTW (X1 −X2). Here we denote δX = (X1 −X2). Following this
assumption, we can reformulate (9) as follows:

min
δX,z

∑
(1− Y )δXTWTWδX + Y z2,

s.t.z ≥ 0, z ≥ m−
√
δXTWTWδX,

(10)

where z = max
(
0,m −D(X1, X2)

)
. Here we reformulate the second constraint

as
√
δXTWTWδX ≥ m− z. Since m− z ≥ 0, we have following:

δXTWTWδX ≥ (m− z)2. (11)
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Therefore, W is positive semi-definite. When both sides of (11) are multiplied
by −1 and substituted into (10), we find that:

min
δX,z

∑
(1− Y )δXTWTWδX + Y z2,

s.t.z ≥ 0,−δXTWTWδX ≤ −(m− z)2.
(12)

From earlier work [21], the formulation (12) implies a quadratic problem with a
non-positive semi-definite constraint, which is an NP-hard problem.

Note that solving (12) can yield the distance δX. There are multiple pairs
of X1 and X2 that satisfy that δX = (X1 −X2). This makes the problem even
harder to solve. Additionally, since the linear relaxation (12) is already NP-hard,
the original problem (9) is also NP-hard given that G(X) is commonly regarded
as a nonlinear function approximated by a neural network.

5 Evaluation

Fig. 1: Variance preservation rates with
different reduced dimensions of PCA.

Fig. 2: Reconstruction errors with varying
parameters for inverting DLM.

Going beyond theoretical analysis the non-invertible ability of the proposed
defenses, we empirically demonstrate these defenses achieve the goals mentioned
in Section 3. To be specific, We evaluate our framework using the widely-used
MNIST data set [18]. MNIST contains a training split with 60000 greyscale
images of handwritten digits and a test set containing 10000 images. Each image
has a dimensionality of 28× 28 = 784 pixels.

In the following experiments, we evaluate the proposed approaches under two
types of adversarial samples. In order to first demonstrate that our mechanisms
do indeed preserve the classification performance of the DNN, we test them
with the original test set. We then test our methods with adversarial samples
generated from the post-defence models to show that we achieve our secondary
design goal
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5.1 Limitations of Adversarial Training

In this section, We demonstrate the limitations of widely adopted defense mech-
anism: adversarial training. We build two different DNNs (model A and B) that
share the same purpose–image recognition. Furthermore, we utilize adversarial
training in learning both models A and B, which we denote as models AADT

and BADT . Note that all following experiment results are the result of evaluating
model AADT using different samples.

The results appear in Table 1. The second row ‘Legitimate’ presents the
classification error rates achieved by model AADT when testing with normal
samples. In the next third and fourth row, we show classification error rates
using adversarial samples generated from model A and model B respectively.
The error rate obtained when testing with adversarial samples generated from
model A itself is higher than the error rate found when testing with adversarial
sample generated from a different model B. This is because adversarial samples
generated from a specific model are more powerful for attacking that specific
model. The result showed below demonstrates that adversarial samples generated
from enhanced DNN models maintain their cross-model efficacy.

Different testing sets Classification error rates of model AADT
Legitimate 0.0213

Adversarial samples from A 0.2506

Adversarial samples from B 0.1633

Adversarial samples from AADT 0.7810

Adversarial samples from BADT 0.5715

Table 1: Classification performance of testing an adversarial training enhanced model
with various adversarial samples

5.2 Classification Performance

Classification Performance of DLM-DNN In this experiment, we fix the
reduced dimensionality to 100. These mappings are found by DLM and PCA.
In order to better explore the effect of combining DLM with PCA, we vary the
percentage Ppca of PCA mappings used in the fixed 100 dimension. Meanwhile,
the percentage of DLM mappings used varies according to 100−Ppca. In addition,
we also change the level of noise added to study its influence on classification
performance.

We first show the classification performance when testing with legitimate
samples in the column named as ‘Legitimate’ in Table 2. The noise coefficient is
set to be either 0.1 or 0.3, while Ppca varies from 5% to 95%. This performance
degradation is due to the increase of noise injected into the lower dimensional
mappings. Therefore, we conclude that if properly set, DLM-DNN can result in
performance comparable to adversarial training.

We further examine the influence of varying Ppca on classification perfor-
mance. As shown in Table 2, the classification performance slightly improves
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Trained
Model

Classification error rates
with different testing sets

Legitimate Adversarial

Normal DNN 0.0198 0.8981

Adversarial Training Enhanced DNN 0.0213 0.2506

DLM-DNN

Noise
coefficient of 0.1

PCA(95%) 0.0226 0.3591
PCA(75%) 0.0247 0.3211
PCA(50%) 0.0258 0.2893
PCA(25%) 0.0268 0.2735
PCA(5%) 0.3101 0.5212

Noise
coefficient of 0.3

PCA(95%) 0.0386 0.2869
PCA(75%) 0.0403 0.2685
PCA(50%) 0.0427 0.2609
PCA(25%) 0.0452 0.2699
PCA(5%) 0.3710 0.5529

DrLIM-DNN 0.0384 0.1380

Table 2: Classification performance of DLM-DNN and DrLIM-DNN

Fig. 3: 2D mapping generated by DrLIM (legitimate samples on the left and adversarial
sample on the right)

with the increase of PCA dimensionality. When Ppca is 95%, most of critical in-
formation about original samples are preserved. However, as Ppca reaches 25%,
enough information is preserved resulting in only a slight decrease in classi-
fication error. Meanwhile, when Ppca varies from 25% to 95%, the benefit of
preserving any further information diminishes as with only a negligible decrease
in the error rate.

We next evaluate the classification performance of DLM-DNN when con-
fronted with adversarial samples. We list the classification error rates in the
column noted as ‘Adversarial ’. According to Table 2, the error rates obtained
by the DLM-DNN are considerably lower than that of a standard DNN, 0.8981.
Again, when Ppca is properly set, the DLM-DNN achieves results comparable
to adversarial training. Interesting enough, as Ppca ranges from 25% to 95%,
classification error goes up. This observation might imply that the impact of ad-
versarial samples is mitigated to a larger degree when more random disturbances
are added.
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DrLIM-DNN Classification Performance In this experiment we demon-
strate the classification performance of DrLIM-DNN. The training set used for
evaluation includes 5 classes from the MNIST data, and each class contains 2000
samples. For testing, each of the 5 classes contains 1000 testing samples.

For training the DrLIM, we label a pair of image samples as similar when
they have the same label. This simplifies the training of DrLIM utilizing strong
prior knowledge. We further set the reduced dimension to 30 during the ex-
periments. Classification performance is shown in Table 2. According to these
results, using DrLIM-DNN results in a slightly higher error rate (0.0384) when
testing with legitimate samples, but achieves a significant improvement in per-
formance (0.1380) when testing adversarial samples. Especially in the latter case,
DrLIM-DNN shows higher robustness when compared to adversarial training.

As previously introduced in Section 4, DrLIM is designed with the objective
of preserving similarity between a pair of high dimensional samples when mapped
to lower dimensional space. Fig. 3(a) shows the 2D mapping result of legitimate
examples. We notice some outliers and hence highlight them and their neighbours
by showing their corresponding images.

Since the point of DrLIM is to preserve the similarity in a lower dimensional
space, we further visualize the 2D mapping of adversarial samples in Fig. 3(b).
The 2D mapping in this case is not as clear as that for legitimate samples, but
the similarity between pairs of samples are still reasonably well-preserved. This
result indicates that DrLIM-DNN will not suffer as much as a normal DNN
would when confronted with highly confusing adversarial samples.

In order to explore more of these outliers, in Table 3, we show the probabil-
ities of making wrong classification decisions when testing a normal DNN and
a DrLIM-DNN with these outliers. As shown in Table 3, these outliers cause
a normal DNN to make wrong classification results with over 97% confidence.
However, when processed with DrLIM-DNN, although these outliers are not
mapped to ideal regions, the probabilities of being wrongly classified is signifi-
cantly reduced to lower than 66%. This result indicates that a DrLIM-DNN is
effective for responding to unfamiliar samples with lower confidence. Therefore,
DrLIM-DNN will not suffer as much as a normal DNN would when confronted
with highly confusing adversarial samples.

Outlier No.
Classification confidence of testing adversarial samples
Normal DNN DrLIM-DNN

1 0.9995 0.5196

2 0.9721 0.5290

3 0.9989 0.6220

4 0.9921 0.5646

5 0.9998 0.5903

6 0.9997 0.5402

7 0.9998 0.6596

8 0.9919 0.5638

Table 3: Classification confidence obtained from normal DNN and DrLIM-DNN
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Trained models Classification error rates

Normal DNN 0.6596

Noise
Coefficient of 0.1

PCA(95%) 0.2846
PCA(75%) 0.2011
PCA(50%) 0.1447
PCA(25%) 0.1131
PCA(5%) 0.3691

Noise
Coefficient of 0.3

PCA(95%) 0.1864
PCA(75%) 0.1729
PCA(50%) 0.1449
PCA(25%) 0.1884
PCA(5%) 0.4766

Table 4: Classification performance of PCA-DNN and DLM-DNN testing with recon-
structed adversarial samples by inverting PCA

As our experimental results show, DrLIM-DNN provides the best perfor-
mance when tested against adversarial samples.

5.3 Reconstruction Performance

As previously introduced in Section 4, both DLM-DNN and DrLIM-DNN are
non-invertible for different reasons. More importantly, we have proven that re-
covering the original data from a low dimensional space induced by DrLIM is
an NP-hard problem. In this subsection, we mainly focus on inverting the pro-
posed dimensional reduction method DLM by approximating it with a linear
transformation matrix. We obtain the linear transformation matrix by solving
a linear regression problem. In case the original data is sparse, we further em-
ploy a linear regression with L1 regularization. First, we demonstrate that when
configuring DLM as pure PCA, the approach is not robust given that it may
be effectively inverted and thus allow for reconstruction of adversarial samples.
Next, we examine the reconstruction error obtained from inverting DLM, taking
a percentage of PCA mappings less than 100%.

We evaluate the reconstruction performance when inverting one extreme case
of DLM, where DLM uses only PCA mappings. We refer to this method as PCA-
DNN for comparison. To examine this extreme case, we first configure DLM
as pure PCA and map legitimate testing samples to a 100-dimensional space.
Then we reconstruct these legitimate samples by inverting PCA, as explained in
Section 4.

Now we assume that an adversary has acquired the lower dimensional map-
pings generated by PCA. Then this adversarial can easily generate their corre-
sponding lower dimensional adversarial mappings. So the adversarial example
can be easily reconstructed as mentioned in Section 4. We use the reconstructed
adversarial samples to test a normal DNN model and a DLM-DNN under differ-
ent settings. According to the testing results shown in Table 4, the reconstructed
adversarial samples maintain their attack power against a normal DNN model.
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And these adversarial samples can be effectively defended by a DLM-DNN as
shown in Table 2.

We finally investigate the reconstruction errors when inverting DLM-DNN.
We present reconstruction errors when varying percentages of PCA mappings
used and when varying sub-space dimensionality in Fig 2. Our experiment shows
that inverting a DLM-DNN leads to high reconstruction errors, regardless of how
many PCA mappings are used what dimensionality is used. Recall the theoretical
analysis of DrLIM-DLM in Section 4, we demonstrate that our proposed methods
effectively build an adversary-resistant DNN.

6 Conclusion

We proposed a new framework for constructing deep neural network models
that are robust to adversarial samples, based on an analysis of both the “blind-
spot” of DNNs and the limitations of previous solutions. With our proposed
framework, we developed two adversary-resistant DNN architectures that lever-
age non-invertible data transformation mechanisms. Then we empirically showed
that crafting an adversarial sample for the first architecture will incur significant
distortion and thus lead to easily detectable adversarial samples. In contrast, un-
der the second architecture, we theoretically demonstrated that it is impossible
for an adversary to craft an adversarial sample to attack it. This implies that
our proposed framework no longer suffers from attacks that rely on generating
model-specific adversarial samples.

Furthermore, we demonstrated that recently studied adversarial training
methods are not sufficient defense mechanisms. Applying our new framework
to the MNIST data set, we empirically demonstrate that our new framework
significantly reduces the error rates in classifying adversarial samples. Further-
more, our new framework has the same classification performance for legitimate
samples with negligible degradation.
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