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a b s t r a c t 

Intelligent applications can be significantly impacted by incorrectly categorized data. Recently, artificial 

intelligence technology has been deployed in an increasing number of security-related scenarios, but the 

issue of data mislabeling has received little attention. We concentrate on the problem of malware mis- 

labeling in this paper. Unfortunately, in the security field, the mislabeling issue of malware is not taken 

seriously. Existing work attempts to aggregate the AV labels to alleviate malware mislabeling. This will 

mislead the security analyst and pass the error to subsequent data-driven applications. Therefore, we 

conduct an in-depth analysis to explore the severity of the malware mislabel issue, and try to rectify the 

description of malware generated from anti-virus engines. We first propose a malware label correction 

tool called RecMaL. It employs hybrid analyses for malware label rectifying. 

According to the thorough exploratory analysis, we figure out the core reasons for mislabeling issues 

and summarize them into 3 types. To verify the effectiveness and how RecMaL benefits the downstream 

applications (e.g., malware classification), we evaluate RecMaL through a series of experiments and show 

that the main components of RecMaL improve the performance, which proves our method effectively 

alleviates the mislabeling issue. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Background of Malware Taxonomy. To facilitate the analysis, 

alware is taxonomized into different malware families . Specifi- 

ally, malware with the same or similar malicious behavior and 

unctionality is categorized into a single family. 

Due to the rapid development of anti-virus engines, the fam- 

ly information of malware can be obtained from the anti-virus 

abels (abbreviated as AV labels 1 ) generated by various ven- 

ors. A standard AV label consists of platform, malware type, 

alware family, variant component, and additional information 

hat is prepended or appended to the name. Such as the mal- 

are label format used by Microsoft is as follows: < T ype : 

 l at f orm/F amil y.V ariant! Su f f ixes > . The combination of the above

rofiles provides the malware repository, the malware analysis ser- 

ices, and the malware hunting services (e.g., JoeSandbox; Kacz- 

arczyck et al., 2020; VirusTotal, 2023b ) to search and associate 

alware samples of interest to security researchers. Moreover, it 
∗ Corresponding author. 

E-mail address: mzgao@njnet.edu.cn (M. Gao) . 
1 The scan result of the Anti-Virus engine. 
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an provide important context for network defenders and help 

hem define and prioritize countermeasures. 

The challenge of malware labelling. At present, the main way 

o obtain malware labels is the engine of security vendors. How- 

ver, due to various reasons, the robustness and accuracy of the 

abels are affected. After our exploration, we find that there are 

ainly the following aspects leading to the problem. 

1. There is no uniform naming convention for malware speci- 

mens ( Maggi et al., 2011 ), which makes it possible that the 

same malware family has different representations. 

2. Different vendors may employ different techniques to diagnose 

malware, leading to diverse detection results. 

3. Malware mutating rapidly will quickly degrade the detection 

ability of vendors. 

4. Malware developers deploy specific countermeasures over mal- 

ware to disable the detection mechanism. 

Perturbation on Learning Model. Although the power of ar- 

ificial intelligence has been unleashed, some subtle pitfalls in 

achine learning will undermine the performance of the system 

nd affect the practical deployment, especially the label inaccu- 

ate issue. Noisy labels are a common problem in machine learn- 

ng and a source of bias ( Northcutt et al., 2021b ). Once mistakes

https://doi.org/10.1016/j.cose.2023.103177
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103177&domain=pdf
mailto:mzgao@njnet.edu.cn
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re made, intelligent picture recognition and natural language pro- 

essing may only impact the user’s experience. However, in the 

cenario of malware detection, label mistakes that result in false 

ositives or false negatives are likely to induce a variety of host in- 

ections or even paralysis. We hope that in the field of malware re- 

earch, just like the mainstream field of artificial intelligence, after 

ompleting tag cleaning, more accurate data correspondence can 

e provided for downstream tasks ( Northcutt et al., 2021b ), so as 

o better serve downstream data-driven tasks. 

Solution. Both academia and industry have made numer- 

us attempts to tackle the aforementioned issues. Some recent 

orks in academia such as AVCLASS ( Sebastián et al., 2016 ), AV- 

LASS2 ( Sebastián and Caballero, 2020 ) and Euphony ( Hurier et al., 

017 ) try to summarize the profile by extracting family labels 

rom different AV labels, which makes it feasible to classify or in- 

ex large-scale malware samples. However, the extracted result is 

ainly maintained by the empirical threshold, inevitably flawed. 

imilarly, in industry, VirusTotal, an open-source threat intelligence 

uery site affiliated with Google, gives suggested threat labels for 

he uploaded samples, such as “worm.midie/vobfus”. While this is 

imilar to the functionality of the AVCLASS tool, in the end, it still 

oes not address the issue of family aliases for malware. Mean- 

hile, according to the latest anti-virus engine measurement re- 

earch ( Zhu et al., 2020 ), the relationship between anti-virus en- 

ines remains convoluted and prone to blindness. Hence, it is ur- 

ent to design suitable automated tools to maintain the knowledge 

ase of malware family names based on the invariance of the mal- 

are itself. 

Goals and Approaches. To mitigate the impact of the aforemen- 

ioned problems, we delve deeper and try to solve them. In this 

aper, we adopt an in-depth analysis via static analysis and dy- 

amic analysis, aiming to explore the seriousness of AV labels error 

nd try to rectify them. To meet this end, we propose a framework 

alled RecMaL. 2 The core insight behind the key design is that the 

ame behavior patterns on large-scale malware have unique map- 

ing associations with family labels rather than other factors. By 

lustering different semantic patterns of malicious behaviors, it can 

dentify malware sets in the same behavior pattern to find label er- 

ors in malware datasets. 

Evaluation. For the experiment, we used BODMAS 

ataset ( Yang et al., 2021a ), the latest open source malware 

ataset in academia. The BODMAS dataset contains 57,293 mal- 

are samples collected from August 2019 to September 2020, 

ith carefully curated family information (581 families). From a 

ross-comparison experiment, we found that close to 20% of the 

alware had shifted or incorrect family labels. And to simulate the 

round truth of the BODMAS dataset, we introduced 6 different 

amily label systems including the original BODMAS labels for 

valuating the quality of RecMaL clustering (see Section 6.4 for 

etails). The results of the ablation experiments show that the 

lustering quality of RecMaL is outperforming the state-of-the-art 

ools. 

The main contributions of our work are as follows: 

• Based on our daily work observation, we find that malware is 

always partially mislabeled by anti-virus engines. To figure out 

the root cause, we adopt an in-depth analysis to empirically 

study the problem. And we reduce the problem into 3 types 

of mislabeling issues, further deduce the root cause and raise 

some suggestions for the community. 

• To overcome the aforementioned problem, we apply a frame- 

work called RecMaL via hybrid analyses, for rectifying the mis- 

labeled part of malware based on the unique invariance of ma- 

licious behavior. We translate the underlying series of malware 
2 abbreviation of Rec tify the Ma lware Family L abel. 

2 
calls to a sequence of high-level behavioral semantics to limit 

the impact of the dynamic evolution of the same malware fam- 

ily, which is the phenomenon of conceptual drift. 

• To evaluate the effectiveness of RecMaL, we apply a system- 

atic experiment over a dynamically evolving malware dataset 

BODMAS. The RecMaL’s clustering quality is superior to that of 

state-of-the-art techniques, according to the findings of cross- 

comparison trials. 

• We will open-source our code and maintain an extensible inter- 

face. It not only provides support for subsequent research but 

also provides a powerful tool in the arms race between the se- 

curity community and hackers. 

. The malware mislabelling problem 

We illustrate the background and the motivation example in 

his section to inspire our work and guide our in-depth analysis. 

.1. Background and terminology 

Background of Online Malware Diagnose. Nowadays, as an in- 

egral component of critical threat intelligence, malware family in- 

ormation can provide end-users, administrators, or security oper- 

tors with vital information about possible types of attacks. The 

nformation can help define remediation procedures, identify pos- 

ible root causes and evaluate the severity and potential conse- 

uences of the attack, which support the development of online 

nti-malware scanning services, such as VirusTotal (2023b) , widely 

sed by researchers and industrial practitioners. Since VirusTotal 

ooperates with 79 security vendors (Vendors) to provide malware 

canning services, whenever a file is uploaded to VirusTotal, up 

o 79 anti-malware engine’s detection results are available. These 

etection results (i.e., AV labels) denote whether the file is mali- 

ious or benign, and the attribute of the malware, i.e., family, type, 

latform, variant, etc. As a result, this capability of VirusTotal has 

een widely used to annotate malware datasets and provide sys- 

em evaluation benchmarks ( Chen et al., 2015; Ford et al., 2009; 

ammad et al., 2018; Kharaz et al., 2016; Le Blond et al., 2014; 

preitzenbarth et al., 2013; Stringhini et al., 2014 ). 

Diverse Naming Paradigm. Nevertheless, each vendor provides 

he AV labels with different structures and representations, since 

here is currently no universal naming convention ( Maggi et al., 

011 ) to provide specifications for detection results. Referring to 

revious work, current vendors have 4 paradigms to provide AV 

abels for malware diagnose ( Ducau et al., 2019a ). We illustrate 4 

nstances (i.e., AV labels) to reclaim the situation. 

• ❶Worm:Win32/Mira.A . These kinds of malware have obvious 

unique attributes, which typically have a large amount of iden- 

tical original codes and often come from the same attacker or 

attack organization. 

• ❷HEUR:Trojan.Win32.Autoit.gen . This type of naming paradigm 

differs only from that of ❶ with the existence of multiple au- 

thors or different sources. What’s more, this example also con- 

tains the technique leveraged by the attacker, i.e., Autoit . 

• ❸Gen:Variant.Zusy.317885 . It is defined by the detection tech- 

nique, for example, the result is detected by the Zusy technique. 

• ❹Trojan:Win32/Meterpreter . The result is based on the method 

used to obfuscate or hide its payload. 

Therefore, four different paradigms of AV labels given from dif- 

erent perspectives will further increase the difficulties of auto- 

atic marking tools. Adding the alias case and the multi-label case 

ill increase the degree of confusion in the model. 

Basic terms. We first define a few terms upfront. 

• AV label denotes a set of intelligence information about the ma- 

licious sample, including type, platform, family, variant, etc. AV 
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Table 1 

Details on samples in the motivating example. 

Sample MD5 Detected Threat Name 

c9581ca3c7febdf1daa8755cacdf68a5 trojan.tofsee/invader 

4a205e354b7d79837cbfcffd39835094 trojan.kryptik/brsecmone 
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u

a

label denotes a set of intelligence information about the mali- 

cious sample, including type, platform, family, variant, etc. 

• A malware family is a group of related programs that share 

enough “code overlap” to be considered a single entity. Instead 

of the typical notion of coarse-grained, all the research in this 

paper is based on the family concept of fine-grained. 

.2. Threat model 

In the scenario of malware mislabelling, we mainly face the fol- 

owing 4 challenges. 

❶Non-uniform naming standards. Since the family label of 

alware is defined by security analysts, their perspectives and 

efinition could be different. In particular, there is no uniform 

aming convention for malware specimens ( Maggi et al., 2011 ). 

ence, the security vendors can use their customized vocabulary 

e.g., Kaspersky, 2020 and Microsoft, 2021 ), which makes it possi- 

le that different labels refer to the same malware family, or that 

he same label indicates different malicious behaviors. To address 

hese issues, the Malware Attribute Enumeration and Characteriza- 

ion (abbreviated as MAEC) (MAEC) defines a standard language for 

haring malware analysis results. However, MAEC does not include 

alware families but uses a strict predefined label table, which is 

ot complete. 

❷Inconsistent detection methods. VirusTotal provides malware 

abels from a large set of anti-virus engines and is heavily used by 

esearchers for malware annotation and system evaluation. How- 

ver, security vendors on VirusTotal do not use the same detection 

echniques to scan malicious samples for family attributes, such 

s heuristics, artificial intelligence algorithms, Yara rule matching, 

tc., depending on specialties and accumulation of the security 

endors. 

❸Malware mutates rapidly. According to the report of Av-Test , 

ore than 1.2 billion unique malware samples were identified in 

021, an increase of more than 12 times compared with 2012. 

ith the advent of the digital economy, the cyber security arms 

ace is also in full swing. To steal more digital property, hackers 

ry to mutate malware to achieve faster and more efficient attacks 

ithout being detected. Because variant malicious samples may in- 

lude characteristics of several different families and their lineage 

s more convoluted, it becomes more challenging for security ven- 

ors to correctly characterize the variant malware in this scenario. 

he security vendor’s final family attribution of the variation is de- 

ermined by the malicious logic’s prioritized relationship inside the 

endor. 

❹Malware countermeasures. Packer and obfuscation. Malware 

ften uses these methods to evade detection because low-cost 

ackaging and obfuscation operations can achieve a great inter- 

erence effect. Packaging can hide the internal structure and code 

esources of the software. Malware abuses this method to hide 

ts malicious payloads. Aghakhani et al. (2020) find that although 

ackers may preserve some information when packing programs 

hat are “useful” for malware classification, such information does 

ot necessarily capture the sample’s behavior. In addition, such in- 

ormation does not help the classifier to generalize its knowledge 

o operate on previously unseen packers, or to be robust against 

rivial adversarial attacks. They also observed that static machine- 

earning-based products on VirusTotal produce a high false pos- 

tive rate on packed binaries, possibly due to the influences of 

ackers. Malware is also likely to abuse obfuscation techniques 

 Fass et al., 2019 ) such as randomization obfuscation, encoding ob- 

uscation, logic structure obfuscation, and other obfuscation meth- 

ds to avoid detection by AV-malware detectors and increase the 

orkload for analysts. Malware may also modify software signa- 

ures to obfuscate ( Kim et al., 2017 ) and signed malware, even 

 wrong signature, can interfere with the judgment of antivirus 
3 
ools to a certain extent. These malware countermeasures greatly 

ncrease the difficulty of malware detection and analysis. 

.3. Motivation 

Motivating example. To further prove the severe malware mis- 

abel situation, we illustrate a pair of malware examples in Table 1 , 

enoting the MD5 and detection results. We find that both samples 

ere highly consistent in their behavior and they both communi- 

ated with 43.231.4.7:443 in the Sandbox report, for which the IP 

oth responded to the threat intelligence of Tofsee Botnet C&C ac- 

ivity. Therefore, judging from the perspective of dynamic behavior, 

hese samples both belong to the Tofsee family, rather than one for 

ofsee family and another one for Kryptik family. 

Speculate the root cause. In response to the above-mentioned 

amily misreports, and to dig deeper into the root causes, on the 

ne hand, we use a dynamic detection method to completely char- 

cterize the malicious behavior, on the other hand, we try to stand 

rom the perspective of the manufacturer and use rapid commer- 

ial detection to reproduce the false positive. Based on compara- 

ive experiments, we find that the static scanning method is easy 

o judge two samples as two families. However, through in-depth 

nalysis, we find that the components of the two samples are the 

ame, the malicious behaviors are both botnets, and both commu- 

icating with the same IP can be classified in the same family. 

herefore, it is very likely that the false positive is caused by uni- 

imensional feature analysis. 

It is common for some researchers to annotate malware us- 

ng only the detection result of a single security vendor (such as 

aspersky) to annotate malware, which is not particularly reliable. 

oreover, some recent works ( Fuller et al., 2021; Lee et al., 2021; 

oi et al., 2021 ) show that the labels of most anti-malware engines 

re aggregated by segmentation of detection results, deletion of 

ommon tokens, replacement of aliases, voting, and others, while 

hese methods are fundamentally dependent on the setting of em- 

irical thresholds that observed on the malware dataset. Honestly, 

he different settings of experience thresholds and the quality of 

he malware dataset both have a significant impact on the gener- 

tion of common tokens and aliases. As for the open algorithm, 

lthough it can generate malware knowledge bases without the 

nvolvement of experts, it relies considerably on the surface sim- 

larity of label words given by manufacturers rather than the deep 

imilarity of the semantics behind them, hence it is not surprising 

hen the study finds that this approach cannot handle the case 

here there are multiple sense words. 

To sum up, the rationality of the above two situations needs 

urther verification, which is the starting point of the central ques- 

ion addressed in this paper: whether the family labels obtained 

y these methods can match the malicious behavior behind the 

alware or not. 

. System design 

In this section, we introduce the key design of RecMaL to fig- 

re out the inconsistency between the AV labels generated by the 

nti-virus engines and the actual malicious behavior. 
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Fig. 1. Overall architecture of the RecMaL framework. 
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.1. Overview 

The overall architecture of the RecMaL is shown in Fig. 1 . 

he input of the RecMaL framework is a well-labeled malware 

ataset. Note that the binary files contained in this dataset need 

o be intact and can be dynamically executed. The family labels 

f malware can be obtained by the anti-virus engines in VirusTo- 

al community, and more stable labels can be obtained using tag 

ggregation tools, such as AVCLASS ( Sebastián et al., 2016 ), AV- 

LASS2 ( Sebastián and Caballero, 2020 ), Euphony ( Hurier et al., 

017 ) et al. After running the RecMaL framework, the RecMaL 

ramework will automatically rectify the possible label errors to 

educe the ML algorithm benchmark problems caused by noisy la- 

els. 

In the preparation module , each executable file first enters the 

reparation module and sequentially passes through the packer 

etection and static filtering, thus discarding malware with the 

ame malicious payload to improve the efficiency of subsequent 

nalysis. 

In the semantic mapping module , a semantic knowledge base 

f malware behavior is built offline, which is used to maintain 

he mapping information from system calls to semantic informa- 

ion. Whenever an executable file is run in the enterprise sand- 

ox ( technology institution ), we extract key information from its 

ynamic operation reports and map them to behavioral semantics 

n the feature extraction module . 

In the cluster module , we first deduplicate the behavior se- 

antic sequences. Secondly, we train the paragraph vector model 

o convert the semantic sequence into paragraph embedding. 

hirdly, we use a hierarchical clustering algorithm to merge mal- 

are with the same similar behavior. Finally, we rectify malware 

abels through inconsistent clue clusters in the malware dataset. 

.2. Preparation module 

To reduce the number of dynamically executed malware sam- 

les and improve the overall efficiency of the RecMaL framework. 

e construct a preparation module consisting of two components: 

acker detection and static filtering, thus enabling a fast compar- 

son of incoming malware samples at the static level to discard 

amples with the same malicious payload. 

We studied different executable file filtering methods at the 

tatic level, such as various code similarity methods. The security 

ommunity has widely studied how to detect code similarity. Ac- 

ording to previous work research, namely testing and detecting 

inary and source code similarity testing detection ( Ducau et al., 

019b; Mirzaei et al., 2021; Schleimer et al., 2003; Xu et al., 2017; 

ang et al., 2021b; Yu et al., 2020 ) and (fuzzy) hashing ( Li et al.,

015; Upchurch and Zhou, 2015 ), we noted that most methods 

uild deep learning (or machine learning) models based on dy- 
4 
amic execution of recovery source code or disassembly instruc- 

ion to complete code similarity detection. However, this similar- 

ty detection code detection has a high cost in the marking data 

nd training model stage, which can not meet our expectations for 

tatic filters. 

We observe in the wild that malware authors usually use a 

arge number of samples with the same attack payload in attack 

ctivity. To avoid the direct filtering of the detection of the anti- 

alware engines, they usually modify the PE header structure or 

dd some meaningless fields to the PE tail to bypass the capture 

f the full-text hash. Therefore, we try to ignore the second part of 

he executable file and calculate the hash value of the key part to 

lter malicious samples with the same attack payload. 

At the same time, it is extremely difficult to extract the real 

ayload of packed malware ( Aghakhani et al., 2020; Cheng Binlin 

nd Haotian, 2021 ). Therefore, we need to add a packer detector 

omponent before the static filter to avoid the interference of hash 

esults caused by the packed sample. 

Packer Detection . In recent years, many studies and tools have 

sed entropy alone to classify whether a sample is packed or 

npacked. However, just as researcher ( Mantovani et al., 2020 ) 

ave found, the size of entropy is not sufficient to conclude that 

he binary is packed or not. Therefore, we utilize the signature- 

ased detection method rather than the entropy-based detec- 

ion method to increase the stability of packer detection. DIE 

Detect It Easy) (horsiccq) is a lightweight signature-based de- 

ection tool, which has the advantages of continuous mainte- 

ance, cross-platform, fully open signature architecture, and batch 

xecution. 

Static Filter . To filter malware samples with the same attack 

ayload, we update the position of the hash algorithm and replace 

he entire file with the executable section where the original entry 

oint (OEP) is located. In this way, the static filter component can 

nly focus on the executable code of the sample, and the change of 

E head and tail regions will not lead to the change in hash results. 

t is not sensitive to the non-core portion of malicious samples. Get 

he executable section code of OEP as shown in Algorithm 1 . 

In more detail, the starting and ending positions of each PE 

ection are calculated after first obtaining the position of the pro- 

ram’s original entrance point in the sample without packer. Each 

ection’s starting location corresponds to a virtual address in the 

ection table. The operating system will assess if the virtual ad- 

ress can be aligned with the size of the memory block provided 

y the hardware condition when loading the executable file while 

omputing the end position of the PE section. If not, 0 will be ap- 

ended to align the memory. At this time, the calculation formula 

f the end position of PE section is shown in Eq. (1) . 

 v a end = r v a start + ((sect ion.size//alignment ) + 1) ∗ alignment 

(1) 
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Algorithm 1 Get the key section of binary file. 

Input: binaryfile //the binary 

Output: Contx //contents of the special section 

entrypoint ← binary.optional _ head er.ad d ressof _ entrypoint 

alignment ← binary.optional _ header.section _ alignment 

for e v erysection do 

rv a ← sect ion. v irt ual _ ad d ress 

if section.size % alignment then 

r v aend ← r v a + ((sect ion.size//alignment ) + 1) ∗ alignment 

else 

r v aend ← r v a + section.size 

end if 

if entr ypoint ≥ r v a & entr ypoint < r v aend then 

if sect ion. v irt ual _ size < section.size then 

Contx ← section.contents [: section. v irtual _ size ] 

else 

Contx ← section.content 

end if 

return Contx 

end if 

end for 
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We used the classic Context-triggered hashing algorithm: SS- 

EEP ( Kornblum, 2006 ) in the static filter. The piece-wise hash 

ses an arbitrary hashing algorithm to create many checksums for 

 file instead of just one. Rather than generating a single hash for 

he entire file, a hash is generated for many discrete fixed-size seg- 

ents of the file. SSDEEP algorithm has non-propagation character- 

stics and alignment robustness, which ensures that the two binary 

les can still generate similar hash values in the case of small dif- 

erences. We defined the static filtering method as SHASH. 

Although static filters can filter malware with the same attack 

ayload, it does not work for some packer types in malware. The 

eason is that these packers shift the position of the actual OEP to 

nother section (not the section of the real OEP), which changes 

he action object of the static filter. Therefore, when the packer 

etection component detects the binary packed, we calculate the 

SDEEP hash value of the whole file. 

.3. Feature extraction module 

Running malware in sandboxes can observe its behavior and ef- 

ect on the system. This strategy will examine various extracted 

nformation from the system while executing the malware, such as 

he registry key modification, the accessed/modified and dropped 

les, newly created and accessed processes (i.e., Application Pro- 

ramming Interfaces, APIs), and kernel-requested services. But ma- 

icious software to avoid sandbox execution and dynamic debug- 

ing, often adds some branch execution, delays execution, and 

ther means of confrontation. For example, when malware de- 

ects that the runtime environment is a VMWare virtual machine, 

t will immediately end the program, or non-malicious code frag- 

ents will be executed. Therefore, to capture the behavior of ma- 

icious software as much as possible, we adopt an enterprise- 

evel sandbox based on the out-of-box mechanism. The sandbox is 

eveloped based on hardware virtualization technology, software 

ynamic analysis technology, and control flow integrity analysis 

echnology. It is superior to Cuckoo sandbox and other common 

andbox based on in-box analysis mode in terms of analysis en- 

ironment transparency, behavior analysis granularity, and sample 

nalysis ability. 

In the sandbox report, API is capable of holding enough infor- 

ation about programs and their behavior as it provides access 

o the essential resources that are available to the kernel system. 
5 
PI has two main parts, the function name, and parameters (ar- 

uments). The function name is a predefined list of APIs that de- 

elopers can hook when developing sandboxes (Sandbox) , and it 

elongs to different categories (i.e., administration and manage- 

ent, Windows user interface, and networking Microsoft, 2023a ). 

owever, function parameters are very complex and heterogeneous 

e.g., integers, strings, and address pointers). Since it might be 

oo difficult to analyze, the parameters generally are ignored in 

ost API-based malware feature extraction studies ( David and Ne- 

anyahu, 2015; Euh et al., 2020; Kolosnjaji et al., 2016; Pascanu 

t al., 2015 ). However, it still needs to be pointed out that mod- 

ls built only by APIs without parameters are blind. The reason is 

hat the parameters of the same API function can express differ- 

nt semantics, but the parameters corresponding to different API 

unctions can also express the same semantics. Therefore, it is not 

uggested to build only by the API function name, which cannot 

elp to distinguish the real attack intention behind the malware 

uthor. 

For example, we have been investigating the persistence of ma- 

icious samples in the Windows system, as shown in Table 2 . It can

e seen that the establishment of persistence is varied, the combi- 

ation of different APIs and different parameters can produce the 

ffect of persistence execution. Malicious samples can be persisted 

hrough the registry, file directory, process commands, Office de- 

ault template, and auto-start scripts. Therefore, it is necessary to 

dentify behavior semantics behind a single API. 

To identify the real behavior semantics behind each API, we 

ntroduced the concept of the ontology ( Smith and Welty, 2001 ) 

n the knowledge graph. Malware ontology is a knowledge model 

f the malware domain, it contains all relevant concepts related 

o malware individuals, malware behaviors, and computer sys- 

em components. Therefore, we extracted caller names, function 

ames, function parameters, and function return values in the be- 

avioral report. And we further constructed a four-tuple as shown 

n Fig. 2 . The caller name class defines which executable pro- 

ram calls the current API. Besides, the executable program may 

e the initial running malware, the software released/modified by 

alware, or normal software. The computer system component 

lass defines the classification architecture of computer compo- 

ents, which includes all system component subclasses and indi- 

iduals. The behavior class explains the classification architecture 

f malware behaviors, which includes different types of behav- 

ors. The returned class defines the return value of the current 

PI, which includes zero and non-zero. In this way, the behav- 

oral semantics of a single API can be described as four-tuple: < 

al l er _ name, AP I _ name, AP I _ exin f o, AP I _ ret > . A self-reading exam-

le: < 22703.file.exe, NtReadFile, C: \ program \ 71733 \ 22703.file.exe, 

 > . 

Abstractly, we used the semantic transformation method to ob- 

ain prior knowledge in the following two ways: 

• Reverse, the feedback of Windows kernel API docu- 

ment ( Microsoft, 2023b ) and ATT&CK Matrix (MITRE) . 

• Positive, the feedback of real example in C language under the 

guidance of Windows user API document ( Microsoft, 2023a ). 

Firstly, we processed and classified the API name (function 

ame). The API name was represented by a string of words, such 

s “NtCreateFile”. In addition, some of the API names ended with 

arious suffixes such as Ex, A, W, ExA, and ExW. Then we re- 

oved such suffixes to ensure that the extracted features were re- 

ilient against the conflict of using multiple versions of the same 

PI call. To deal with heterogeneous API parameters, we classi- 

ed API representing different domain functions, such as “Inter- 

etCrackUrl” and “DnsQuery” into the network function, “NtDelete- 

ile” and “NtOpenFile” into the file function. Secondly, we tried to 

dentify the parameters of APIs with different functional areas, as 
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Table 2 

Different expressions of persistence technology. 

API Name Parameters Values Type 

NtSetValueKey HKEY_CURRENT_USER \ ... ... \ Windows \ CurrentVersion \ Run Register 

CreateProcessInternal C: \ Windows \ system32 \ reg.exe add Autorun_key Process 

NtWriteFile C: \ Users \ jack \ AppData \ Roaming \ ... ... \ Start Menu \ Programs \ Startup Folder 

MoveFileWithProgress C: \ Users \ jack \ AppData \ Roaming \ Microsoft \ Templates \ Normal.dotm Office 

CopyFile C: \ autorun.inf Script 

Fig. 2. Conceptual model of malware ontology. 

Table 3 

Part of the class structure of system components. 

Functional Categories Parameters Type Instance 

File Prefetch File C: \ Windows \ Prefetch 

Browser Privacy File C: \ Documents and Settings \ Local Settings \ Application Data \ Chrome 

System Winhelp File C: \ Windows \ winhelp.exe 

Email File C: \ Documents and Settings \ Address book 

Registry AutoRun Key HKEY_CURRENT_USER \ SOFTWARE \ ... ... \ CURRENTVERSION \ RUN 

Hidden Key HKEY_LOCAL_MACHINE \ SOFTWARE \ ... ... \ FOLDER \ HIDDEN \ SHOWALL 

Image Hijack Key HKEY_LOCAL_MACHINE \ SOFTWARE \ ... ... \ IMAGE FILE EXECUTION OPTIONS 

System Software Setup Key HKEY_LOCAL_MACHINE \ SYSTEM \ CONTROLSET001 \ SERVICES 

Service Message Service Messenger 

Terminal Service TermService 

Network Service Rasman 

Sound Service AudioSrv 

Network Local Net 127.0.0.1 

0.0.0.0 

localhost 

Inner Net 10.0.0.1 

192.0.0.1 

External Net www.google.com 

221.226.65.138 

Process Batch cmd C: \ Windows \ system32 \ cmd.exe 

Reg C: \ Windows \ system32 \ reg.exe 

Rundll32 C: \ Windows \ system32 \ rundll32.exe 

CUI C: \ Windows \ system32 \ conime.exe 

Register DLL C: \ Windows \ system32 \ regsvr32.exe 
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calls that cannot be matched by rules as normal behavior. 
hown in Table 3 . We used the regular expression to transform 

pecific heterogeneous parameters of system components into pa- 

ameter types. The function parameters of some specific API were 

ore than one, so the system component in the four-tuple is a 

ist. Thirdly, we also processed the return value and gave it zero or 

on-zero forms. We adopted the above steps to extract useful and 

efined information from the four-tuple. At the same time, seman- 

ic matching is carried out with the extracted four-tuple informa- 

ion. 

In addition, we also formulated some rules as shown below to 

ssist the semantic translation. 

• The self-reading, self-deleting, self-modifying, and a series of 

self-operating behaviors are defined which are mainly caused 

by functions such as NtReadFile, NtCreateFile, and NtDeleteFile. 

The key to this semantics is whether the caller name and pa- 

rameter are the same. 
6 
• The rename semantics is defined, which is generally caused by 

the MoveFileWithProgress function. The key to this semantics is 

whether the directories of the two parameters in the parameter 

list are the same. 

• The excessive behavioral semantics is defined, which means 

that the malware runs a single API more than 1500 times in the 

sandbox. According to the types of API, we divide the semantics 

into normal excessive behaviors and abnormal excessive behav- 

iors. Some details are shown in Table 4 . 

• The two semantics of finding files and obtaining file attributes 

are mainly caused by functions such as NtQueryAttributesFile, 

NtQueryDirectoryFile, and NtQueryFullAttributesFile. The key to 

distinguishing the two semantics is whether the return value of 

the function is zero. 

• To highlight the malicious behavior of samples, we define the 

http://www.google.com
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Table 4 

Partial API list of different excessive behavior types. 

Type of Behavior API Name 

Normal too many behaviors NtReadFile 

NtQueryAttributesFile 

LoadLibrary 

GetComputerName 

DnsQuery 

Abnormal too many behavior CreateProcessInternal 

RegOpenKey 

KiTrap0D 

NtAdjustPrivilegesToken 

VMDetect 
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.4. Cluster module 

After converting the dynamic behavior report into behavior se- 

antic sequence, the RecMaL framework performed the feature 

ransformation and the clustering on the behavior semantic se- 

uence, and further analyzed and cleaned labels according to clus- 

ering results. 

Preprocessing . After transforming the original sandbox report 

nto a semantic sequence, we found a large number of repeated 

all sequences. We first performed [1,4]-gram sequences dedupli- 

ation, retaining only the first consecutive sequence. At the same 

ime, to avoid the uncertain conclusion caused by the small num- 

er of sample behaviors, which may be due to the lack of specific 

nvironments required by malicious samples in sandboxes, we fil- 

er the samples with the kinds of behavioral semantics less than 

0 or run crashes. 

Embedding . To better vectorize sandbox reports, we evaluated 

he advantages and disadvantages of a large number of language 

odels that learn vectors from documents. For example, the word 

ag model will lose information about word order in the document 

nd will not try to learn the meaning of potential words; Although 

he Word2Vec model can learn the meaning of potential words, 

alculating a vector for the entire document will introduce other 

efects. Therefore, we use the paragraph vector model ( Le and 

ikolov, 2014 ) to map the semantic sequence into the vector 

pace. Specifically, the paragraph vector model can calculate a doc- 

ment as a low-dimensional vector representation, which is usu- 

lly better than the word vector superposition or average of the 

ord2Vec model. 

Clustering algorithm . Specifically, we implemented a 

ighly parallel version of hierarchical agglomerative cluster- 

ng ( Müllner, 2011 ), which has been recently given theoretical sup- 

ort for its ability to generate high-quality clusters ( Moseley and 

ang, 2017 ). This clustering algorithm only needs to set one 

arameter and a distance threshold to determine when to cut the 

ree of clusters(i.e., when to stop creating smaller and smaller 

ubclusters). However, the choice of deciding when to cut de- 

ends mainly on the similarity between the behaviors of malware 

amilies. 

Distance threshold . Generally speaking, a higher value of the 

istance threshold generates fewer but larger clusters, whereas a 

maller value yields more but smaller clusters. Therefore, the set- 

ing of distance threshold cannot rely on simple subjective experi- 

nce. It should be noted that there must be a considerable part of 

ample label errors in the malware dataset, and there is a dynamic 

volution of malware behavior in the same family. Therefore, if we 

se the maximum average distance as the distance threshold, more 

mpurities will be introduced. To obtain a relatively scientific dis- 

ance threshold, we use a method called Median Absolute Devia- 

ion (MAD) ( Leys et al., 2013 ). As shown in Formula (2) . Firstly, we

alculate the average Euclidean distance of all samples under each 

amily label and calculate the median of the average distance of all 
7 
amilies. Secondly, we calculate the difference between the average 

istance to the median for each family. Finally, MAD is the median 

f the absolute value of these differences. As a measurement of 

tatistical deviation, MAD is more suitable for capturing outliers in 

ata sets than the standard deviation. 

AD = med ian (| X i − med ian (X ) | ) (2) 

.5. Label rectification 

The type of label error. When we use an unsupervised clus- 

ering algorithm to get specific malware clusters, it means that we 

ather malicious samples with high behavioral similarities. There- 

ore, when the family labels in a cluster are not unique, we will 

iscuss whether the labels in the cluster are appropriate. There are 

hree specific cases: 

• Label errors occur when a class exists in the dataset that is 

more appropriate for an example than its given class. 

• Ontology issue is that the same malware belongs to different 

family names, while these family names can be replaced by 

each other. In other words, the ontology issue is the malware 

family alias problem. For example WannaCry and WannaCryp- 

tor. 

• Multi-label malware has more than one label in the malware 

dataset. These labels belong to different categories of detection 

names. For example Lamber and Autorun. 

Rectifying labels can improve the classification accuracy of 

achine learning. We first used RecMaL to perform family clas- 

ification on samples of the BODMAS dataset. In the clustering re- 

ults, if the samples in a certain cluster contain more than two 

ifferent family labels, we think that some of the labels need to be 

orrected. After classifying samples from BODMAS using RecMaL, 

e found some labels that may need to be corrected. The detailed 

lgorithm description is shown in Algorithm 2 . To find and correct 

hese labels, we mainly introduce three distances. 

1. The first distance. The average Cosine distance of all samples 

under each family label 

2. The second distance. The average Cosine distance of each sam- 

ple in the inconsistent clue cluster to the other samples of its 

family. 

3. The third distance. The average Cosine distance of each sample 

in the inconsistent clue cluster to the other samples under that 

cluster. The purpose of introducing the third distance is to find 

the most central part of the sample in the cluster. 

❶ If the second distance of a sample is smaller than the first 

istance, it is considered that the original BODMAS label of the 

ample is more reasonable. Otherwise, it is considered that the 

ample may need to be revised. For every inconsistent clue cluster 

hat needs to be relabeled, it is necessary to first judge the status 

f the cluster. 

❷ If there is only one family with a reasonable sample label in 

he cluster, then use the label of this family to correct all samples 

hat need to be revised. If there are multiple families with reason- 

bly labeled samples in the family cluster, rank these samples from 

arge to small according to the third distance of these samples. The 

orresponding ranking of each sample is their score, which means 

hat the smaller the third distance of the sample, the higher the 

core. Count the sum of the scores of samples with reasonable la- 

els under each family and use the label of the family with the 

ighest score to correct all samples that need to be revised. 

. Implementation 

The framework of RecMaL mainly consists of the following four 

odules. 
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Algorithm 2 Label Rectification. 

Input: Samples //features and labels of BODMAS dataset 

Input: cluster //clustering results output by RecMaL 

Output: newlabel //sample labels corrected using the algorithm 

for e v er ycluster.e v er ysample do 

if sample.secdis ≤ sample. f irdis then 

sampl e.l abel ← T rue 

else 

sampl e.l abel ← F al se 

end if 

end for 

for e v erycluster do 

cl uster.true _ l abel ← dict() 

for e v erysample do 

if sampl e.l abel then 

cl uster.true _ l abel .ad d (sample. fam ) 

end if 

end for 

cl uster.true _ l abel ← l ist(cl uster.true _ l abel ) 

end for 

for e v er ycluster.e v er ysample do 

if sample.label == False then 

if l en (cl uster.true _ l abel ) == 1 then 

sampl e.newl abel ← cl uster.truel abel [0] 

else if l en (cl uster.true _ l abel ) > 1 then 

Sort sample.rank By sample.thidis 

sample.score ← sample.rank 

for cl uster.true _ l abel do 

family.score ← Sum( current _ famil y.sampl e.score ) 

end for 

sampl e.newl abel ← cl uster.maxscore _ fam 

else 

sampl e.newl abel ← sampl e. fam 

end if 

end if 

end for 
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.1. Embedding and clustering details 

To find the label errors in the malware dataset, we run the 

ecMaL framework in the BODMAS dataset. We progressively pro- 

ess the BODMAS dataset according to the RecMaL workflow. In 

he word embedding stage, we use the PV-DBOW model in the 

oc2Vec model. Compared with PV-DM, this model can further 

mit the words in the window and use the paragraph vector to 

redict any words in the text. The PV-DBOW model is of great sig- 

ificance for highlighting the different behaviors of different mal- 

are families. Specifically, in the process of training the Doc2Vec 

odel, we configure the frequency of random downsampling of 

igh-frequency words as not 1e-5, the window size used is 10, the 

nitial learning rate is set to 0.025, and the words with lower to- 

al frequency are never ignored. The training period is 20, and the 

ierarchical softmax method is used to train and finally map the 

ocument mapped to semantics to the document embedding rep- 

esentation of 2048. 

In the hierarchical agglomerative clustering algorithm, we use 

he critical point of anomaly value automatically generated by the 

AD method as the distance threshold, and finally, the RecMaL 

ramework clusters the remaining 31,121 samples into 16,550 clus- 

ers. Statistics show that in all clusters, there are 3611 clusters with 

nconsistent family labels. Therefore, to measure the effectiveness 

f the clustering algorithm, we only manually check the behavior 

imilarity of sandbox reports by a 1:10 random sampling ratio of 

lusters with inconsistent labels. Through our manual verification, 
8 
he behavior similarity clustering method of RecMaL framework is 

ffective and accurate. 

.2. Positioning label issue types 

Firstly, we calculate the average Euclidean distance of all sam- 

les under each family label. Secondly, we calculate the average 

istance of each sample in the inconsistent clue cluster to the 

ther samples of its family and compare this distance with the av- 

rage distance of its family to determine whether the sample is an 

utlier. 

• If all samples in inconsistent cues are not outliers, we consider 

that the case belongs to a multi-label or malware alias. When 

the average distance of these families does not exceed the dis- 

tance threshold, that is, they belong to high cohesion family la- 

bels, they should be malware alias types, otherwise they are 

multi-label types. 

• if there are samples in inconsistent cue clusters belonging to 

outliers, samples belonging to normal points, we consider that 

the case belongs to the label error, and rectify the label of the 

abnormal point family to the label of the normal point family; 

• If all samples in inconsistent cues are outliers, the RecMaL 

framework cannot infer the ground truth of these samples ac- 

cording to the existing basis, so RecMaL does not do anything. 

But the RecMaL framework will throw out these outliers so that 

security analysts can pay more attention to these samples’ la- 

bels. 

According to the above steps, the RecMaL framework finds a to- 

al of 300 label errors, 58 malware family alias label pairs, and 6 

eneral tokens of the multi-label. 

. Evaluation 

We claim that static filter components in the framework can fil- 

er malware with the same attack payload, and feature and cluster- 

ng modules can embed behavior semantic documents and gener- 

te high-quality clusters for label rectification. In this section, we 

onduct experiments to evaluate each component of RecMaL. We 

nalyze the differences between the clusters and the differences 

etween labels in the same cluster from the dataset. In addition, 

e verify the effectiveness of label rectification, via setting abla- 

ion experiments on malware family classification. 

.1. Datasets 

Internal dataset. In our experiment, we investigate real mal- 

are (excluding normal software), which is collected from a large- 

cale security vendor (for anonymous). The dataset is collected 

rom July 2020 to December 2020, including 208,124 malicious 

amples. It should be noted that if malicious samples are collected 

ased on time, we may not able to guarantee that each SHASH is 

ssociated with enough samples, nor can we evaluate the effec- 

iveness of the same SHASH. Therefore, we decided to take SHASH 

s the guide and to collect malicious samples to ensure that the 

umber of each SHASH should be more than 100. At the same 

ime, we got the VirusTotal detection reports of all samples and 

sed the AVCLASS2 tool to label family labels and other attributes. 

he dataset included 67 different families (e.g. blackmoon, sytro, 

earso), and all malicious samples were based on the Windows 

latform. The labels for this dataset only involve labels based on 

he traditional family category. We only evaluate the performance 

f Static filtering components on this dataset. 

External dataset. We introduce a well-labeled external dataset 

ODMAS ( Yang et al., 2021a ), According to the authors, the BOD- 

AS dataset contains 57,293 malware samples collected from Au- 

ust 2019 to September 2020, with carefully curated information 
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Fig. 3. Number of malware samples with each SHASH ID. 

Fig. 4. Scatter plot of Jaccard distance of SHASH-related samples. 
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n 581 families. And the family label is mainly obtained by inter- 

al scripts similar to AVCLASS ( Sebastián et al., 2016 ), but a small

ortion (about 1%) of malware was labeled via manual analysis of 

he binaries. We try to use the RecMaL to further analyze the label 

roblems on the dataset. 

.2. Static filter performance 

Filter effectiveness. In this section, we conduct the relevant ex- 

eriment on our internal dataset to evaluate the effectiveness of 

he static filter. Please note that AV labels are not credible (maybe 

ccur label errors), thus we use the distance of the dynamic be- 

avior semantics kinds of relevant samples under the same SHASH 

o measure the effectiveness of static filters. We make statistics 

n the remaining samples after preprocessing. And the number of 

amples associated with each SHASH value is shown in Fig. 3 . The 

ajority of the malicious samples associated with SHASH are more 

han 200. We construct a bag of words model for all behavioral se- 

antic sequences and then calculate the average Jaccard distance 

f the associated samples under each SHASH. The Jaccard distance 

ormula is shown in Eq. (3) . The Jaccard distance scatters plot is 

hown in Fig. 4 . It can be seen that most of the SHASH associated

ith the behaviors of malicious samples are highly consistent, and 
9 
ccasionally there is a big difference because the sandbox does not 

un out of all the behaviors of the sample. In a words, it explained 

hat the static filter in the RecMaL framework could effectively fil- 

er malware with the same attack payload. 

accard(A, B ) = 1 − | A ∩ B | 
| A ∪ B | (3) 

Filter efficiency. In this section, we conduct the relevant exper- 

ment on BODMAS dataset to evaluate the efficiency of the static 

lter. First we perform the packer detection on this dataset to ex- 

lude the effect of packed on the static filter. The detection results 

re shown in Fig. 5 , in which more than 40% of the malware sam-

les are packed. For these samples, the static filter does not pro- 

ess them because the real entry point of the program can not be 

etermined. We also found a small number of samples with errors 

n the file format parsing, which were not processed by the static 

lter and are described separately in the Table 5 . We performed 

tatic filtering on the remaining samples, and as shown in Table 5 , 

he filtering efficiency of the uncased samples reached 82.0%, i.e., 

here were only 5736 groups of malware with different attack pay- 

oads among the 31,805 samples. Even when viewed on the entire 

ataset, the filtering efficiency reaches an impressive 45.5%. 
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Fig. 5. Statistical result of packed samples in BODMAS. 

Table 5 

The detail of SHASH filtering effect. 

Amount Proportion SHASH Filter Type 

24,235 42.3% 24,235 0% Packer 

1251 2.2% 1251 0% Unparse 

31,805 55.5% 5736 82.0% Unpacker 

57,291 100% 31,222 45.5% Total 
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Table 6 

SHASH in terms of accuracy and efficiency compared to other methods. 

Method \ Metrics Accuracy(Purity) Hashes Number Efficiency 

ImpHash 0.81971 4036 92.955% 

PeHash 0.88436 7029 87.731% 

Vhash 0.89166 7632 86.679% 

Authentihash 1.00000 57,072 0.382% 

SHASH 0.97235 31,222 45.503% 
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Comparison with state-of-the-art methods. We compared the 

HASH algorithm with several of the most widely used hashing 

ethods in the current industry on the BODMAS dataset. We com- 

are the purity metrics ( Rao and Josephine, 2018 ) on different re- 

ult sets to measure accuracy and the number of hash clusters to 

easure the efficiency of filtering. 

• ImpHash (MANDIANT) . The method is used specifically for 

Portable Executable (PE) files and is based on the PE import ta- 

ble contents. Since the behavioral capabilities of malware are 

indicated by imports function, it is hoped that hash values 

would be consistent across samples with related behavioral ca- 

pabilities. 

• PeHash ( Wicherski, 2009 ). The method hashes the PE exe- 

cutable for selected fields that are not easily influenced by 

changes during compilation and packing, such as the initial 

stack size. 

• Vhash ( VirusTotal, 2023a ). The method is a similarity clustering 

algorithm inside VirusTotal. It is based on a simple structural 

feature hashing algorithm for finding similar binary samples. 

• Authentihash (VTAPI) . The method used to verify that the rele- 

vant sections of a PE image file have not been altered by calcu- 

lating the PE image excluding certificate related data and over- 

lay. 

• SHASH. Our method calculates the fuzzy hash of a binary file 

by analyzing its file structure and extracting its most important 

section representation. 

Higher purity values indicate fewer anomalies in the clusters 

nd higher accuracy of the hashing algorithm. The smaller num- 

er of hashes indicates that the algorithm can find fewer same 

ttack payloads and the more efficient the filtering. As shown in 

able 6 , although the ImpHash method achieves 92.9% in filtering 

fficiency, its accuracy is the worst with only 0.82. Meanwhile, the 

uthentihash method, although its accuracy is the highest, its ac- 

ual filtering efficiency is the worst at 0.38%. In a comprehensive 

omparison, our SHASH algorithm balances accuracy and efficiency. 

t maximizes the filtering efficiency while ensuring a high accuracy 

ate. 
10 
.3. Dynamic clustering performance 

To verify the performance of RecMaL, we compare the results 

f several representative malware classification methods on the 

ODMAS dataset and measure the Adjusted Mutual Information 

AMI) ( Vinh et al., 2010 ) metrics on different result sets. In the next

art of this section, we briefly describe these selected methods and 

he details of the result set used to measure AMI metrics. The rea- 

on we use AMI as a judgment is that while the original tags of 

he samples are not entirely correct, most of them should be ac- 

urate. In the absence of accurate sample labels, we use the cred- 

ble BODMAS dataset and the malware labeling tool AVCLASS to 

bserve the clustering quality of different methods. In past studies, 

esearchers have proposed different feature extraction methods to 

escribe the behavior of malicious samples, but these features are 

ainly used for malware identification instead of malware classi- 

cation. We tried to reproduce these feature extraction methods 

or family classification and compared the AMI of different feature 

xtraction methods on different datasets. 

• Baseline. This method extracts sequences of API call from mal- 

ware reports and map them directly into feature vectors. These 

vectors are then learned through Doc2Vec to generate feature 

vectors. 

• Sample Hashing ( Zhang et al., 2020b ). The method extracts key 

fields from malware sample running reports and map them to 

unique hash-like vectors. These vectors are filtered and com- 

bined to form the final sample features. 

• Malheur ( Rieck et al., 2011 ). The method extracts short behav- 

ioral patterns from malware samples to capture some of the 

underlying program semantic. 

• Malware Fusion ( Wang et al., 2021 ). The method performs 

sample filtering based on the API call sequence and use the n- 

gram model to remove API combinations with low occurrence 

rates. 

• Semantic Features. Our approach analyzes API calls and pa- 

rameter combinations to judge their behavior and generate se- 

mantic information needed for RecMaL. 

Meanwhile, we not only compare the AMI information of dif- 

erent feature methods, we also add Fare framework ( Liang et al., 
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Table 7 

The AMI metric results on all comparison experiments. 

Method \ Label BODMAS AVCLASS(direct) AVCLASS_retrain-1 AVCLASS_retain-2 AVCLASS2 AVCLASS2_retrain 

API + Agg. 0.642 0.654 0.665 0.663 0.658 0.665 

API + Fare 0.399 0.321 0.325 0.323 0.324 0.323 

HASH + Agg. 0.638 0.648 0.659 0.658 0.649 0.655 

HASH + Fare 0.39 0.393 0.399 0.399 0.395 0.405 

malheur + Agg. 0.687 0.712 0.719 0.720 0.714 0.718 

malheur + Fare 0.428 0.436 0.436 0.441 0.438 0.444 

Fusion + Agg. 0.781 0.746 0.745 0.745 0.752 0.754 

Fusion + Fare 0.383 0.325 0.328 0.322 0.327 0.323 

Semantic + Agg. 0.817 0.738 0.749 0.75 0.74 0.744 

Semantic + Fare 0.387 0.323 0.322 0.321 0.328 0.324 
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021 ) to compare the advantages and disadvantages of cluster- 

ng algorithms. Fare is an aggregation framework for unsupervised 

lassification models. It aims to perform classification on datasets 

ith low-quality labels. 

Ground-truth establishment. Since the labeling of the BOD- 

AS dataset is not its ground-truth, we introduced a variety of 

ifferent labeling results to simulate the most similar ground- 

ruth. These label results are given by the AVCLASS tool and the 

VCLASS2 tool, which are currently the most advanced tools in 

cademia. 

1. AVCLASS (direct) Label BODMAS samples using the AVCLASS 

default thesaurus. 

2. AVCLASS (retrain-1) Use BODMAS samples with default nalias 

and talias parameters to retrain the thesaurus before AVCLASS 

labeling. These two parameters are used to control the associa- 

tion between label words. 

3. AVCLASS (retrain-2) Use BODMAS samples to retrain the the- 

saurus before AVCLASS labeling. The nalias and talias parame- 

ters are changed to 100 and 0.98 to reduce the frequency of 

associated tags. 

4. AVCLASS2 (direct) Label BODMAS samples using the AVCLASS2 

default thesaurus. 

5. AVCLASS2 (retrain) Use BODMAS samples with default param- 

eters to retrain the thesaurus before AVCLASS2 labeling. We no 

longer adjust the parameters of AVCLASS2 because its retrain- 

ing needs to provide the correct labels of the original samples 

to achieve better results than AVCLASS. 

The experimental results are shown in Table 7 . The method 

sed by RecMaL has the highest AMI among all methods when 

ompared with the BODMAS result set. Its AMI result on AVCLASS 

nd AVCLASS2 result set is also higher than all methods except 

alware Fusion. 

Although the AMI does not directly represent the accuracy, 

he BODMAS dataset is partly manually verified which makes it 

ore reliable. It should be noted that the AMI indicator is not the 

ccuracy as the actual classification, we only use this indicator for 

uxiliary analysis. While Malware Fusion achieves a slightly higher 

MI on AVCLASS, we prefer this because of the limitations of the 

agging tool. One of the reasons is that the gap between AVCLASS 

nd AVLCASS2 and their retraining results is very small, indicating 

hat the tool does not learn enough useful information from the 

nput samples. In contrast, the results of BODMAS contain some 

uman-verified labels, and we have reason to believe that the re- 

ults on the BODMAS set are more accurate than those on AVCLASS 

nd AVCLASS2. Therefore, the Semantic Feature that achieved the 

ighest AMI result on the BODMAS set also shows that RecMaL has 

 better performance. 

Unsupervised model ensemble frameworks like Fare are not 

uitable for multi-class and few-shot tasks. Another notable re- 

ult is that using the Fare clustering framework leads to lower AMI 

alues for malware classification. We believe that this is due to 
11 
he characteristics of Fare itself: Fare is suitable for more samples 

nd Classification with fewer classes in the original implementa- 

ion. BODMAS itself has more than 500 different malware family 

ags and 57,293 malicious samples. Compared with the experimen- 

al project data provided by Fare itself, there are too many types to 

e classified and too few samples are provided, which is an impor- 

ant reason for Fare’s low AMI. 

We also notice Malheur can achieve higher AMI results than 

ther methods when using Fare for clustering. We think this is 

aused by the Malheur’s characteristics having more dimensions 

nd having traits that resemble one-hot encoding. This finding also 

uggests that sparse matrices may make input data more suitable 

or Fare. 

.4. Family label rectification 

After correcting the labels, we used the original static features 

eleased by the authors of the BODMAS dataset to input a random 

orest algorithm for training. The results show that after correcting 

he label through RecMaL, the accuracy of the machine learning 

odel trained using the original BODMAS data set has increased. 

To verify the effect of label correction, we use the random for- 

st classifier with default parameter settings to test on the origi- 

al feature dataset of BODMAS. The experimental results using the 

ve-fold verification method show that the accuracy of the clas- 

ifier improved from 79.3% to 81.2%. This shows that even if the 

eatures provided by RecMaL are not applied, correcting the labels 

an slightly improve the accuracy of the Classification result. 

. Findings on BODMAS 

In this section, we focus on the main label issues found when 

anually analyzing the inconsistency in family labels between Rec- 

aL and BODMAS. To make it more clear, we follow the nam- 

ng method of Northcutt et al. (2021a) for the malware label is- 

ues, including label error, ontology issue, and multi-label mal- 

are, as they have applied a thorough empirical study to figure out 

he label issues on the famous picture datasets, such as CIFAR- 

0. To provide a clearer visual illustration, we list the informa- 

ion of associated examples for each labeling issue shown in the 

able 8 . Column 1 denotes the ID of the case, column 2 denotes the

D5 of malware samples, column 3 denotes the packed techniques 

dopted by the attackers, column 4 denotes the label provided by 

ODMAS, column 5 denotes the ground truth of the malware fam- 

ly, and column 6 denotes the type of malware mislabel. 

.1. Label error 

Observation: Based on our research, packed malware samples 

sually cause to be mislabeled. According to Table 8 , the first 

erged row with ID ’0’ represents a pair of examples for label er- 

or, of which one is unpacked, and another is packed with tech- 

ique tElock . To figure out the root cause of mislabeling issue, we 
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Table 8 

Examples of each label issue. 

ID Sample MD5 Packed Detection BODMAS Label Ground Truth Case Type 

0 0fad413e6972bacbe6834816cc57b200 unpacked wabot wabot Label error 

c40dba3c0dbf66c55328780fd79261e5 tElock sfone 

1 0dca70cd568f819ef3e882430ae7fcab VMProtect lightmoon \ Ontological 

b3be6e5663d07bd52d21b7653f28fdb4 VMProtect moonlight 

2 a2ec2928668aa5463612658fd610ebba Petite trojan trojan.upatre Multi-label 

44375e1153f9b9044ffd7e9cfccedd6f unpacked upatre 
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Fig. 6. Malware alias pairs. 
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anually re-investigate the malicious behavior via static and dy- 

amic analyses. According to the static scanning result, we find the 

E section table of the packed sample has been changed compared 

o the unpacked sample, and 88 import functions in the import ta- 

le have been reduced to 2 (i.e., function GetModuleHandleA and 

essageBoxA ). The limited static analysis information seems to tell 

s that the samples are different in content and structure, but the 

ynamic behavior sequences of the two samples are essentially the 

ame, and the file named “sIRC4.exe” are both operated, which is 

onsistent with the threat intelligence analysis result of Trend Mi- 

ro, concluded as wabot (TRENDMICRO) family. 

Finding #1: Packing techniques significantly limit the effec- 

iveness of static scanning-only engines. To explore the impact of 

acking technology on the classification of malware families, be- 

ides the illustrated samples, we perform statistics and analysis on 

he packing of samples in the dataset. 

According to Fig. 5 , about one-third of malware samples are 

acked with 41 kinds of packing techniques, and the top 10 

mount packing technique are presented respectively, of which 

PX is the most leveraged packing technique. Due to the com- 

lexity of the packing technology, there is no automated unified 

npacking tool at present, and the face of such a large number 

f complex packing technologies will indeed affect the detection 

esults of the Anti-Virus engines. Besides packing techniques, ob- 

uscation and other countermeasures reduce the risk of real ma- 

icious code being exposed to anti-virus engines, which are uni- 

ersally used by threat actors to evade engine detection. This also 

ndicates that it is difficult for a single detection technology to give 

 reliable detection result. 

Suggestion: Engines should adopt a multi-layered hybrid de- 

ection approach depending on the severity of the malware and 

ts attributes. The scanners on VirusTotal only use part of the tech- 

ologies from the actual anti-virus products. Rather than enforc- 

ng the files, it depends heavily on the detection signatures hit by 

hem, without using the memory scanning techniques or dynamic 

xecution techniques. As a consequence, relying solely on static 

canning techniques to obtain detection results can produce a one- 

ided diagnosis of malware. On the premise of balancing perfor- 

ance and detection results, we recommend that these potentially 

igh-threat samples can be subjected to a secondary hybrid analy- 

is based on whether the malware has properties (i.e., packed) that 

ffect static detection. 

.2. Ontological issue 

Observation: Different malware has almost the same mali- 

ious behavior, but because the detection results come from dif- 

erent engines, they will produce different family classification 

esults, that is the naming alias problem. In the malware sam- 

le examples belonging to the Ontological type in Table 8 , it can 

e seen that the family label of the two samples is quite similar. 

oreover, we confirm from the Microsoft’s security intelligence re- 

ort (MICROSOFT) that lightmoon and moonlight are two aliases of 

ne malware family. To further explore the impact of the family 

lias issue, we enumerate some typical alias cases from BODMAS 
12 
n Fig. 6 , from which we can intuitively find several pairs of la- 

els that have a high degree of similarity to the literal view, such 

s juched and jushed . Moreover, we find the alias relationship be- 

ween the label of qukart and berbew in the alias mapping list from 

he AVCLASS tool, which also confirms the existence of aliases on 

he other hand. 

Finding #2: There is no standard naming paradigm for the 

axonomy of the malware family. The main reason for the fam- 

ly alias problem is that, on the one hand, there is no authoritative 

aming system in the malware community for your reference, sim- 

lar to the classification in biology. On the other hand, when defin- 

ng family names, there is no authoritative naming system for your 

eference. Naming rules under different granularities will confuse 

lassification levels. 

Suggestion: It is essential to construct a malware family li- 

rary as soon as possible to help eliminate malware family ambi- 

uity. At present, since there is no standard malware family nam- 

ng paradigm as well as no publicly accessible malware knowledge 

ase, each anti-virus software vendor detects malware based on its 

wn rules and signature corpus. As a result, the omissions and in- 

onsistencies in family labels are difficult to eliminate, while mal- 

are family aliases are generally common, requiring us to build a 

alware family label library as soon as possible. 

.3. Multi-label issue 

Observation: Malware is marked as multi-family (i.e., multi- 

abel) with inclusion relationships, also with different granular- 

ty. Note that the multi-label issue is not the same as malware 

liases (i.e., ontological issue). Ontological issue denotes that mal- 

are is labeled with family labels indicating the same behavior, 

ut with different representations. As for the multi-label issue, the 

cope of malware covered by these labels is different and cannot 

e replaced by each other. 

Therefore, the example denoted as multi-label issue in Table 8 , 

ne is labeled as Trojan , and another is labeled as upatre . We man-

ally verify the ground truth of these two samples and find that 

oth of the samples should be labeled as upatre . One of the sam- 

les can only be analyzed as Trojan via engine scanning due to the 

mpediment of the Petite packing technology. Even, though the la- 

els of both samples are correct, the hierarchy of the descriptions 
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Table 9 

Top3 confidence for predicting upatre samples via 5 fold cross-validation. 

Recall@1 Recall@2 Recall@3 Trained? 

Model-1 bluteal:0.60 upatre:0.40 kwbot:0.00 
√ 

Model-2 fukru:0.60 upatre:0.40 win32:0.00 
√ 

Model-3 bluteal:0.63 upatre:0.37 botgor:0.00 
√ 

Model-4 ldpinch:0.63 upatre:0.37 kwbot:0.00 
√ 

Model-5 upatre:1.00 ryzerlo:0.00 win32:0.00 ✗ 
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o which the labels belonged is not uniform. It is well known that 

amily Trojan , described as one of the common malware types, has 

umerous different subordinate malicious families, including sub- 

amily upatre . As a result, it is too coarse-grained as a family label.

Finding #3: There is no consensus on the layering of mali- 

ious families between the engines and within the engines. The 

etection mechanisms of different modules will hit different types 

f malicious features, and these features are not assigned different 

eights based on detection capabilities and malware classification, 

hich leads to confusion in the level and granularity of detection 

esults. 

What’s more, the non-unified granularity of malware family 

abels confuses the learning-based malware classification models. 

o verify our hypothesis, we measure the degree to which the in- 

dvertent use of different hierarchies of family labels can confuse 

he model. We leverage the sample 3 in Table 8 as the experimental 

bject. 

We shuffle the data set and divide it into 5 parts equally, each 

ime we take 4 of them for training and 1 for testing. To verify

he degree of confusion of the model, we label the experimental 

bject as Trojan ( upatre in practice) into the data set. After training 

ve times via a different combination of data, we use 5 different 

odels to infer the malware family. The results are shown in the 

able 9 . 

Column 2 to 4 separately denotes the Top3 family labels with 

he highest confidence and their concrete confidence. Column 5 

enotes whether the experimental object sample is in the training 

et. According to the result, the prediction confidence of the upatre 

amily is 100% when the samples are not partitioned into the train- 

ng set, and conversely, the confidence of being predicated on the 

luteal, fukru or even ldpinch families will exceed the confidence of 

he upatre family, not to mention the family Trojan . Intuitively, the 

ame sample appears in the training set, and it is easy to succeed 

n inference, but the experimental results show that this is not the 

ase. The mixed-use of family labels (e.g., Trojan and upatre ) at dif- 

erent hierarchies can easily lead to confusion in the model, result- 

ng in performance degradation. 

Suggestion: The multi-hierarchical family label system should 

e included in the output of the detection engine and be valued 

y the community. From the above verification results, it can be 

een that although the family labels of the parent level (i.e., Tro- 

an ) include the ones of the child level (i.e., upatre ) in the natural

anguage. But in the actual detection process, the malicious behav- 

or and static representation of the malware may be quite differ- 

nt. Neglect to classify family labels at different hierarchies will 

ot only hinder the accuracy and credibility of malware label clus- 

ering tools (e.g., AVCLASS) but may even hinder the development 

f intelligent virus analysis and detection. 

. Discussion 

To better contribute to the community, we discuss the future 
irection of this issue and the limitation of RecMaL. 

3 MD5 of the sample is a2ec2928668aa5463612658fd610ebba. 

t

f

a
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❶ In this work, we focus on rectifying the family labels and 

ay less attention to static filter components. Previous studies have 

hown that both packing behavior and multi-labeling may reduce 

he efficiency of malware sample classification and identification. 

ince RecMaL’s focus is mainly on semantic behavior extraction, 

ppropriate static filtering and pre-processing of the samples will 

mprove RecMaL’s performance by reducing the difficulty of ana- 

yzing malware samples. For static analysis of malware, while bal- 

ncing performance and efficiency, we could further try to consider 

ore modalities (e.g., semantics, context) and more methods (e.g., 

ata-driven) to improve the feature extraction results. 

❷ How to reasonably apply advanced algorithm technology in 

he field of data mining and machine learning to malware analysis 

s also an urgent problem to be solved. Since we used a relatively 

imple statistical model in this work, some errors will be intro- 

uced. Due to the lack of absolutely accurate sample labels, we 

eed to manually check some samples for further analysis. Some 

amples that have not been manually verified may have some 

xtreme cases, such as unsuccessful runs, resulting in inaccurate 

ample reports. This will interfere with RecMaL’s extraction of se- 

antic behavior features in malicious samples. In addition, since 

he labels of the BODMAS dataset itself are not completely accu- 

ate, RecMaL’s also learns some wrong label-related features from 

t. Due to the limitations of current malware labeling tools, when 

aced with samples labeled with multiple labels by these tools, 

ecMaL can only process labels associated with the behavior after 

xtracting semantic information. 

❸ The irregularity of malware labeling may greatly hinder the 

evelopment of intelligent malware analysis. In this work, we try 

o solve it in a semi-automatic way, and we hope to rectify the la- 

el completely automatically or intelligently. Due to the instability 

nd diversity of labeling tools, we decided to define malware by 

ts semantic behavior. By comparing several malware feature ex- 

raction methods and classification methods, we believe that Rec- 

aL has the best performance since it has the highest AMI met- 

ic on the human-verified BODMAS dataset. After using RecMaL to 

eclassify and correct the labels of malware samples in BODMAS, 

he accuracy of training with the original features of BODMAS is 

mproved. This result shows that RecMaL can help machine learn- 

ng improve the performance of malware classification and labeling 

asks. 

. Related works 

Malware clustering. Sebastián et al. (2016) , Sebastián and Ca- 

allero (2020) proposed a tool to label malware at scale, which 

utomatically extracted tags from AV labels. The accuracy of this 

pproach on known families ranges from 67.5% to 96.3%. Although 

t works in a low-cost way, both its own experimental results 

nd our evaluation results in this paper prove that the results 

an not in turn be used as ground truth for the malware sample. 

aczmarczyck et al. (2020) proposed a method named Spotlight, 

hich uses a supervised learning method to filter known malware 

amilies, then clusters unknown malware by unsupervised method, 

nd prioritizes them for further investigation using a scorer to 

btain the related data that the security researchers wanted. 

u et al. (2013) proposed a malware clustering method based on 

tatic features. Bailey et al. (2007) and Bayer et al. (2009) de- 

cribe the malware clustering method on dynamic behavior and its 

onfiguration file. They run their experiments on large-scale mal- 

are samples. Zhang et al. (2017) proposed an ensemble method to 

ombine different f eatures for automatic malware categorization. 

i et al. (2010) have reported on their investigation of the impact 

hat ground-truth selection might have on the accuracy reported 

or malware clustering techniques. Li et al. (2017) implemented 

n Android malware clustering system through iterative mining of 
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alicious payload and checking whether malware samples share 

he same version of the malicious payload. Pitolli et al. (2017) pro- 

osed a malware family clustering method based on hybrid fea- 

ures and birch algorithm. Rieck et al. (2011) proposed a frame- 

ork named Malheur, it extracted short behavioral patterns from 

alware to capture underlying program semantics and analyse 

alware behavior. Furthermore, according to the experimental 

ndings of Pitolli et al. (2017) , Malheur can produce clusters of 

igher quality than AVCLASS ( Sebastián et al., 2016 ). 

Semantics-based malware features. Yang et al. (2019) sur- 

eyed the generation method of malware family features based 

n behavioral semantics, performed statistical analysis for the 

ypical description in different aspects, and revealed the chal- 

enges and its future development prospects. Ding et al. (2019) ap- 

lied ontology technique into the malware domain, and proposed 

he method for constructing malware behavioral knowledge base. 

avarro et al. (2018) proposed an ontology-based framework to 

nalyze the complex network and identify characteristics shared 

y malware samples. Zhang et al. (2020a) proposed a frame- 

ork named APIGraph, which can enhance state-of-the-art mal- 

are classifiers with the similarity information among evolved 

ndroid malware in terms of semantically equivalent or similar 

PI usages. Zhang et al. (2019) proposed a malware identification 

ethod that calculates the confidence of association rules between 

he abstracted API calls to form behavioral semantics to describe 

n application. Naval et al. (2015) proposed an approach for iden- 

ifying real malware using asymptotic equipartition property (AEP) 

ainly applied in the information-theoretic domain to characterize 

he program semantics. 

. Conclusion 

Based on the fact that the malware dataset has a large num- 

er of misstatements in family label description, we conduct the 

tudy on the plausibility of malware family labeling from the con- 

ensus that malware with similar behaviors should belong to the 

ame malware family. For this, we design and construct an auto- 

ated tool RecMaL to locate the family mislabeling problem types. 

riefly, RecMaL locates the crucial location of malicious samples 

hrough static analysis to filter the number of samples, and it maps 

he sequence of calls from the underlying system in the sandbox 

eport into the corresponding behavioral semantics, and then pro- 

ides guidance to the clustering algorithm by calculating the sim- 

larity among behaviors to finally rectify malware labels. We find 

hree different types of mislabeling issues, including label errors, 

ntology issues, and multi-labels. The three different types of la- 

eling issues affect more than two thousand samples. When we 

ectify the mislabeling in the dataset, with the same features and 

odels used, rectifying the label can lead to a 1.9% improvement in 

ccuracy. More importantly, RecMaL is significant for complement- 

ng the malware family alias knowledge base. Our experiment in- 

icates that RecMaL for reducing label noise can provide sufficient 

uality to mitigate label inaccuracy in practice. 
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