
Computers & Security 128 (2023) 103177

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

RecMaL: Rectify the malware family label via hybrid analysis

Wang Yang

a , b , Mingzhe Gao

a , b , ∗, Ligeng Chen

c , Zhengxuan Liu

a , b , Lingyun Ying

d

a School of Cyber Science and Engineering, Southeast University, China
b Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China
c State Key Laboratory for Novel Software Technology, Nanjing University, China
d QI-ANXIN Technology Research Institute, China

a r t i c l e i n f o

Article history:

Received 6 September 2022

Revised 30 January 2023

Accepted 7 March 2023

Available online 10 March 2023

Keywords:

Malware family

Hybrid analysis

AV labels

Behavioral semantics

Label rectification

a b s t r a c t

Intelligent applications can be significantly impacted by incorrectly categorized data. Recently, artificial

intelligence technology has been deployed in an increasing number of security-related scenarios, but the

issue of data mislabeling has received little attention. We concentrate on the problem of malware mis-

labeling in this paper. Unfortunately, in the security field, the mislabeling issue of malware is not taken

seriously. Existing work attempts to aggregate the AV labels to alleviate malware mislabeling. This will

mislead the security analyst and pass the error to subsequent data-driven applications. Therefore, we

conduct an in-depth analysis to explore the severity of the malware mislabel issue, and try to rectify the

description of malware generated from anti-virus engines. We first propose a malware label correction

tool called RecMaL. It employs hybrid analyses for malware label rectifying.

According to the thorough exploratory analysis, we figure out the core reasons for mislabeling issues

and summarize them into 3 types. To verify the effectiveness and how RecMaL benefits the downstream

applications (e.g., malware classification), we evaluate RecMaL through a series of experiments and show

that the main components of RecMaL improve the performance, which proves our method effectively

alleviates the mislabeling issue.

© 2023 Elsevier Ltd. All rights reserved.

1

m

c

f

i

l

d

m

t

w

P

p

v

m

m

c

t

t

e

l

m

h

0

. Introduction

Background of Malware Taxonomy. To facilitate the analysis,

alware is taxonomized into different malware families . Specifi-

ally, malware with the same or similar malicious behavior and

unctionality is categorized into a single family.

Due to the rapid development of anti-virus engines, the fam-

ly information of malware can be obtained from the anti-virus

abels (abbreviated as AV labels 1) generated by various ven-

ors. A standard AV label consists of platform, malware type,

alware family, variant component, and additional information

hat is prepended or appended to the name. Such as the mal-

are label format used by Microsoft is as follows: < T ype :

 l at f orm/F amil y.V ariant! Su f f ixes > . The combination of the above

rofiles provides the malware repository, the malware analysis ser-

ices, and the malware hunting services (e.g., JoeSandbox; Kacz-

arczyck et al., 2020; VirusTotal, 2023b) to search and associate

alware samples of interest to security researchers. Moreover, it
∗ Corresponding author.

E-mail address: mzgao@njnet.edu.cn (M. Gao) .
1 The scan result of the Anti-Virus engine.

t

m

a

r

i

ttps://doi.org/10.1016/j.cose.2023.103177

167-4048/© 2023 Elsevier Ltd. All rights reserved.
an provide important context for network defenders and help

hem define and prioritize countermeasures.

The challenge of malware labelling. At present, the main way

o obtain malware labels is the engine of security vendors. How-

ver, due to various reasons, the robustness and accuracy of the

abels are affected. After our exploration, we find that there are

ainly the following aspects leading to the problem.

1. There is no uniform naming convention for malware speci-

mens (Maggi et al., 2011), which makes it possible that the

same malware family has different representations.

2. Different vendors may employ different techniques to diagnose

malware, leading to diverse detection results.

3. Malware mutating rapidly will quickly degrade the detection

ability of vendors.

4. Malware developers deploy specific countermeasures over mal-

ware to disable the detection mechanism.

Perturbation on Learning Model. Although the power of ar-

ificial intelligence has been unleashed, some subtle pitfalls in

achine learning will undermine the performance of the system

nd affect the practical deployment, especially the label inaccu-

ate issue. Noisy labels are a common problem in machine learn-

ng and a source of bias (Northcutt et al., 2021b). Once mistakes

https://doi.org/10.1016/j.cose.2023.103177
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103177&domain=pdf
mailto:mzgao@njnet.edu.cn
https://doi.org/10.1016/j.cose.2023.103177

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

a

c

s

p

f

s

c

b

t

o

w

C

2

f

d

m

S

q

t

s

d

w

s

g

g

b

w

t

p

n

a

c

s

p

c

i

r

d

d

w

w

c

m

g

f

e

d

c

t

2

t

2

t

f

a

i

s

q

a

u

c

s

t

d

c

p

b

t

H

S

t

t

2

p

l

i

f

m

w

re made, intelligent picture recognition and natural language pro-

essing may only impact the user’s experience. However, in the

cenario of malware detection, label mistakes that result in false

ositives or false negatives are likely to induce a variety of host in-

ections or even paralysis. We hope that in the field of malware re-

earch, just like the mainstream field of artificial intelligence, after

ompleting tag cleaning, more accurate data correspondence can

e provided for downstream tasks (Northcutt et al., 2021b), so as

o better serve downstream data-driven tasks.

Solution. Both academia and industry have made numer-

us attempts to tackle the aforementioned issues. Some recent

orks in academia such as AVCLASS (Sebastián et al., 2016), AV-

LASS2 (Sebastián and Caballero, 2020) and Euphony (Hurier et al.,

017) try to summarize the profile by extracting family labels

rom different AV labels, which makes it feasible to classify or in-

ex large-scale malware samples. However, the extracted result is

ainly maintained by the empirical threshold, inevitably flawed.

imilarly, in industry, VirusTotal, an open-source threat intelligence

uery site affiliated with Google, gives suggested threat labels for

he uploaded samples, such as “worm.midie/vobfus”. While this is

imilar to the functionality of the AVCLASS tool, in the end, it still

oes not address the issue of family aliases for malware. Mean-

hile, according to the latest anti-virus engine measurement re-

earch (Zhu et al., 2020), the relationship between anti-virus en-

ines remains convoluted and prone to blindness. Hence, it is ur-

ent to design suitable automated tools to maintain the knowledge

ase of malware family names based on the invariance of the mal-

are itself.

Goals and Approaches. To mitigate the impact of the aforemen-

ioned problems, we delve deeper and try to solve them. In this

aper, we adopt an in-depth analysis via static analysis and dy-

amic analysis, aiming to explore the seriousness of AV labels error

nd try to rectify them. To meet this end, we propose a framework

alled RecMaL. 2 The core insight behind the key design is that the

ame behavior patterns on large-scale malware have unique map-

ing associations with family labels rather than other factors. By

lustering different semantic patterns of malicious behaviors, it can

dentify malware sets in the same behavior pattern to find label er-

ors in malware datasets.

Evaluation. For the experiment, we used BODMAS

ataset (Yang et al., 2021a), the latest open source malware

ataset in academia. The BODMAS dataset contains 57,293 mal-

are samples collected from August 2019 to September 2020,

ith carefully curated family information (581 families). From a

ross-comparison experiment, we found that close to 20% of the

alware had shifted or incorrect family labels. And to simulate the

round truth of the BODMAS dataset, we introduced 6 different

amily label systems including the original BODMAS labels for

valuating the quality of RecMaL clustering (see Section 6.4 for

etails). The results of the ablation experiments show that the

lustering quality of RecMaL is outperforming the state-of-the-art

ools.

The main contributions of our work are as follows:

• Based on our daily work observation, we find that malware is

always partially mislabeled by anti-virus engines. To figure out

the root cause, we adopt an in-depth analysis to empirically

study the problem. And we reduce the problem into 3 types

of mislabeling issues, further deduce the root cause and raise

some suggestions for the community.

• To overcome the aforementioned problem, we apply a frame-

work called RecMaL via hybrid analyses, for rectifying the mis-

labeled part of malware based on the unique invariance of ma-

licious behavior. We translate the underlying series of malware
2 abbreviation of Rec tify the Ma lware Family L abel.

2
calls to a sequence of high-level behavioral semantics to limit

the impact of the dynamic evolution of the same malware fam-

ily, which is the phenomenon of conceptual drift.

• To evaluate the effectiveness of RecMaL, we apply a system-

atic experiment over a dynamically evolving malware dataset

BODMAS. The RecMaL’s clustering quality is superior to that of

state-of-the-art techniques, according to the findings of cross-

comparison trials.

• We will open-source our code and maintain an extensible inter-

face. It not only provides support for subsequent research but

also provides a powerful tool in the arms race between the se-

curity community and hackers.

. The malware mislabelling problem

We illustrate the background and the motivation example in

his section to inspire our work and guide our in-depth analysis.

.1. Background and terminology

Background of Online Malware Diagnose. Nowadays, as an in-

egral component of critical threat intelligence, malware family in-

ormation can provide end-users, administrators, or security oper-

tors with vital information about possible types of attacks. The

nformation can help define remediation procedures, identify pos-

ible root causes and evaluate the severity and potential conse-

uences of the attack, which support the development of online

nti-malware scanning services, such as VirusTotal (2023b) , widely

sed by researchers and industrial practitioners. Since VirusTotal

ooperates with 79 security vendors (Vendors) to provide malware

canning services, whenever a file is uploaded to VirusTotal, up

o 79 anti-malware engine’s detection results are available. These

etection results (i.e., AV labels) denote whether the file is mali-

ious or benign, and the attribute of the malware, i.e., family, type,

latform, variant, etc. As a result, this capability of VirusTotal has

een widely used to annotate malware datasets and provide sys-

em evaluation benchmarks (Chen et al., 2015; Ford et al., 2009;

ammad et al., 2018; Kharaz et al., 2016; Le Blond et al., 2014;

preitzenbarth et al., 2013; Stringhini et al., 2014).

Diverse Naming Paradigm. Nevertheless, each vendor provides

he AV labels with different structures and representations, since

here is currently no universal naming convention (Maggi et al.,

011) to provide specifications for detection results. Referring to

revious work, current vendors have 4 paradigms to provide AV

abels for malware diagnose (Ducau et al., 2019a). We illustrate 4

nstances (i.e., AV labels) to reclaim the situation.

• ❶Worm:Win32/Mira.A . These kinds of malware have obvious

unique attributes, which typically have a large amount of iden-

tical original codes and often come from the same attacker or

attack organization.

• ❷HEUR:Trojan.Win32.Autoit.gen . This type of naming paradigm

differs only from that of ❶ with the existence of multiple au-

thors or different sources. What’s more, this example also con-

tains the technique leveraged by the attacker, i.e., Autoit .

• ❸Gen:Variant.Zusy.317885 . It is defined by the detection tech-

nique, for example, the result is detected by the Zusy technique.

• ❹Trojan:Win32/Meterpreter . The result is based on the method

used to obfuscate or hide its payload.

Therefore, four different paradigms of AV labels given from dif-

erent perspectives will further increase the difficulties of auto-

atic marking tools. Adding the alias case and the multi-label case

ill increase the degree of confusion in the model.

Basic terms. We first define a few terms upfront.

• AV label denotes a set of intelligence information about the ma-

licious sample, including type, platform, family, variant, etc. AV

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

2

l

m

d

n

H

(

b

t

t

t

s

m

n

l

r

e

t

a

e

v

m

2

W

r

t

w

c

i

d

T

t

v

o

p

f

r

i

p

t

n

f

t

t

l

i

p

(

f

o

w

t

a

Table 1

Details on samples in the motivating example.

Sample MD5 Detected Threat Name

c9581ca3c7febdf1daa8755cacdf68a5 trojan.tofsee/invader

4a205e354b7d79837cbfcffd39835094 trojan.kryptik/brsecmone

t

i

2

l

d

w

c

b

t

t

T

f

o

a

f

c

t

t

a

s

n

T

d

i

K

M

L

a

c

t

p

t

t

a

a

i

i

s

w

w

f

t

b

m

3

u

a

label denotes a set of intelligence information about the mali-

cious sample, including type, platform, family, variant, etc.

• A malware family is a group of related programs that share

enough “code overlap” to be considered a single entity. Instead

of the typical notion of coarse-grained, all the research in this

paper is based on the family concept of fine-grained.

.2. Threat model

In the scenario of malware mislabelling, we mainly face the fol-

owing 4 challenges.

❶Non-uniform naming standards. Since the family label of

alware is defined by security analysts, their perspectives and

efinition could be different. In particular, there is no uniform

aming convention for malware specimens (Maggi et al., 2011).

ence, the security vendors can use their customized vocabulary

e.g., Kaspersky, 2020 and Microsoft, 2021), which makes it possi-

le that different labels refer to the same malware family, or that

he same label indicates different malicious behaviors. To address

hese issues, the Malware Attribute Enumeration and Characteriza-

ion (abbreviated as MAEC) (MAEC) defines a standard language for

haring malware analysis results. However, MAEC does not include

alware families but uses a strict predefined label table, which is

ot complete.

❷Inconsistent detection methods. VirusTotal provides malware

abels from a large set of anti-virus engines and is heavily used by

esearchers for malware annotation and system evaluation. How-

ver, security vendors on VirusTotal do not use the same detection

echniques to scan malicious samples for family attributes, such

s heuristics, artificial intelligence algorithms, Yara rule matching,

tc., depending on specialties and accumulation of the security

endors.

❸Malware mutates rapidly. According to the report of Av-Test ,

ore than 1.2 billion unique malware samples were identified in

021, an increase of more than 12 times compared with 2012.

ith the advent of the digital economy, the cyber security arms

ace is also in full swing. To steal more digital property, hackers

ry to mutate malware to achieve faster and more efficient attacks

ithout being detected. Because variant malicious samples may in-

lude characteristics of several different families and their lineage

s more convoluted, it becomes more challenging for security ven-

ors to correctly characterize the variant malware in this scenario.

he security vendor’s final family attribution of the variation is de-

ermined by the malicious logic’s prioritized relationship inside the

endor.

❹Malware countermeasures. Packer and obfuscation. Malware

ften uses these methods to evade detection because low-cost

ackaging and obfuscation operations can achieve a great inter-

erence effect. Packaging can hide the internal structure and code

esources of the software. Malware abuses this method to hide

ts malicious payloads. Aghakhani et al. (2020) find that although

ackers may preserve some information when packing programs

hat are “useful” for malware classification, such information does

ot necessarily capture the sample’s behavior. In addition, such in-

ormation does not help the classifier to generalize its knowledge

o operate on previously unseen packers, or to be robust against

rivial adversarial attacks. They also observed that static machine-

earning-based products on VirusTotal produce a high false pos-

tive rate on packed binaries, possibly due to the influences of

ackers. Malware is also likely to abuse obfuscation techniques

 Fass et al., 2019) such as randomization obfuscation, encoding ob-

uscation, logic structure obfuscation, and other obfuscation meth-

ds to avoid detection by AV-malware detectors and increase the

orkload for analysts. Malware may also modify software signa-

ures to obfuscate (Kim et al., 2017) and signed malware, even

 wrong signature, can interfere with the judgment of antivirus
3
ools to a certain extent. These malware countermeasures greatly

ncrease the difficulty of malware detection and analysis.

.3. Motivation

Motivating example. To further prove the severe malware mis-

abel situation, we illustrate a pair of malware examples in Table 1 ,

enoting the MD5 and detection results. We find that both samples

ere highly consistent in their behavior and they both communi-

ated with 43.231.4.7:443 in the Sandbox report, for which the IP

oth responded to the threat intelligence of Tofsee Botnet C&C ac-

ivity. Therefore, judging from the perspective of dynamic behavior,

hese samples both belong to the Tofsee family, rather than one for

ofsee family and another one for Kryptik family.

Speculate the root cause. In response to the above-mentioned

amily misreports, and to dig deeper into the root causes, on the

ne hand, we use a dynamic detection method to completely char-

cterize the malicious behavior, on the other hand, we try to stand

rom the perspective of the manufacturer and use rapid commer-

ial detection to reproduce the false positive. Based on compara-

ive experiments, we find that the static scanning method is easy

o judge two samples as two families. However, through in-depth

nalysis, we find that the components of the two samples are the

ame, the malicious behaviors are both botnets, and both commu-

icating with the same IP can be classified in the same family.

herefore, it is very likely that the false positive is caused by uni-

imensional feature analysis.

It is common for some researchers to annotate malware us-

ng only the detection result of a single security vendor (such as

aspersky) to annotate malware, which is not particularly reliable.

oreover, some recent works (Fuller et al., 2021; Lee et al., 2021;

oi et al., 2021) show that the labels of most anti-malware engines

re aggregated by segmentation of detection results, deletion of

ommon tokens, replacement of aliases, voting, and others, while

hese methods are fundamentally dependent on the setting of em-

irical thresholds that observed on the malware dataset. Honestly,

he different settings of experience thresholds and the quality of

he malware dataset both have a significant impact on the gener-

tion of common tokens and aliases. As for the open algorithm,

lthough it can generate malware knowledge bases without the

nvolvement of experts, it relies considerably on the surface sim-

larity of label words given by manufacturers rather than the deep

imilarity of the semantics behind them, hence it is not surprising

hen the study finds that this approach cannot handle the case

here there are multiple sense words.

To sum up, the rationality of the above two situations needs

urther verification, which is the starting point of the central ques-

ion addressed in this paper: whether the family labels obtained

y these methods can match the malicious behavior behind the

alware or not.

. System design

In this section, we introduce the key design of RecMaL to fig-

re out the inconsistency between the AV labels generated by the

nti-virus engines and the actual malicious behavior.

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

Fig. 1. Overall architecture of the RecMaL framework.

3

T

d

t

o

t

a

C

2

f

r

b

p

d

s

a

o

t

t

b

d

i

m

t

T

w

l

3

p

W

p

i

s

s

c

c

b

2

Y

2

b

n

t

i

a

s

l

a

m

a

o

t

fi

p

a

c

r

u

u

h

t

b

t

(

t

n

e

p

t

p

o

P

I

t

s

g

s

s

d

b

c

p

o

r

.1. Overview

The overall architecture of the RecMaL is shown in Fig. 1 .

he input of the RecMaL framework is a well-labeled malware

ataset. Note that the binary files contained in this dataset need

o be intact and can be dynamically executed. The family labels

f malware can be obtained by the anti-virus engines in VirusTo-

al community, and more stable labels can be obtained using tag

ggregation tools, such as AVCLASS (Sebastián et al., 2016), AV-

LASS2 (Sebastián and Caballero, 2020), Euphony (Hurier et al.,

017) et al. After running the RecMaL framework, the RecMaL

ramework will automatically rectify the possible label errors to

educe the ML algorithm benchmark problems caused by noisy la-

els.

In the preparation module , each executable file first enters the

reparation module and sequentially passes through the packer

etection and static filtering, thus discarding malware with the

ame malicious payload to improve the efficiency of subsequent

nalysis.

In the semantic mapping module , a semantic knowledge base

f malware behavior is built offline, which is used to maintain

he mapping information from system calls to semantic informa-

ion. Whenever an executable file is run in the enterprise sand-

ox (technology institution), we extract key information from its

ynamic operation reports and map them to behavioral semantics

n the feature extraction module .

In the cluster module , we first deduplicate the behavior se-

antic sequences. Secondly, we train the paragraph vector model

o convert the semantic sequence into paragraph embedding.

hirdly, we use a hierarchical clustering algorithm to merge mal-

are with the same similar behavior. Finally, we rectify malware

abels through inconsistent clue clusters in the malware dataset.

.2. Preparation module

To reduce the number of dynamically executed malware sam-

les and improve the overall efficiency of the RecMaL framework.

e construct a preparation module consisting of two components:

acker detection and static filtering, thus enabling a fast compar-

son of incoming malware samples at the static level to discard

amples with the same malicious payload.

We studied different executable file filtering methods at the

tatic level, such as various code similarity methods. The security

ommunity has widely studied how to detect code similarity. Ac-

ording to previous work research, namely testing and detecting

inary and source code similarity testing detection (Ducau et al.,

019b; Mirzaei et al., 2021; Schleimer et al., 2003; Xu et al., 2017;

ang et al., 2021b; Yu et al., 2020) and (fuzzy) hashing (Li et al.,

015; Upchurch and Zhou, 2015), we noted that most methods

uild deep learning (or machine learning) models based on dy-
4
amic execution of recovery source code or disassembly instruc-

ion to complete code similarity detection. However, this similar-

ty detection code detection has a high cost in the marking data

nd training model stage, which can not meet our expectations for

tatic filters.

We observe in the wild that malware authors usually use a

arge number of samples with the same attack payload in attack

ctivity. To avoid the direct filtering of the detection of the anti-

alware engines, they usually modify the PE header structure or

dd some meaningless fields to the PE tail to bypass the capture

f the full-text hash. Therefore, we try to ignore the second part of

he executable file and calculate the hash value of the key part to

lter malicious samples with the same attack payload.

At the same time, it is extremely difficult to extract the real

ayload of packed malware (Aghakhani et al., 2020; Cheng Binlin

nd Haotian, 2021). Therefore, we need to add a packer detector

omponent before the static filter to avoid the interference of hash

esults caused by the packed sample.

Packer Detection . In recent years, many studies and tools have

sed entropy alone to classify whether a sample is packed or

npacked. However, just as researcher (Mantovani et al., 2020)

ave found, the size of entropy is not sufficient to conclude that

he binary is packed or not. Therefore, we utilize the signature-

ased detection method rather than the entropy-based detec-

ion method to increase the stability of packer detection. DIE

Detect It Easy) (horsiccq) is a lightweight signature-based de-

ection tool, which has the advantages of continuous mainte-

ance, cross-platform, fully open signature architecture, and batch

xecution.

Static Filter . To filter malware samples with the same attack

ayload, we update the position of the hash algorithm and replace

he entire file with the executable section where the original entry

oint (OEP) is located. In this way, the static filter component can

nly focus on the executable code of the sample, and the change of

E head and tail regions will not lead to the change in hash results.

t is not sensitive to the non-core portion of malicious samples. Get

he executable section code of OEP as shown in Algorithm 1 .

In more detail, the starting and ending positions of each PE

ection are calculated after first obtaining the position of the pro-

ram’s original entrance point in the sample without packer. Each

ection’s starting location corresponds to a virtual address in the

ection table. The operating system will assess if the virtual ad-

ress can be aligned with the size of the memory block provided

y the hardware condition when loading the executable file while

omputing the end position of the PE section. If not, 0 will be ap-

ended to align the memory. At this time, the calculation formula

f the end position of PE section is shown in Eq. (1) .

 v a end = r v a start + ((sect ion.size//alignment) + 1) ∗ alignment

(1)

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

Algorithm 1 Get the key section of binary file.

Input: binaryfile //the binary

Output: Contx //contents of the special section

entrypoint ← binary.optional _ head er.ad d ressof _ entrypoint

alignment ← binary.optional _ header.section _ alignment

for e v erysection do

rv a ← sect ion. v irt ual _ ad d ress

if section.size % alignment then

r v aend ← r v a + ((sect ion.size//alignment) + 1) ∗ alignment

else

r v aend ← r v a + section.size

end if

if entr ypoint ≥ r v a & entr ypoint < r v aend then

if sect ion. v irt ual _ size < section.size then

Contx ← section.contents [: section. v irtual _ size]

else

Contx ← section.content

end if

return Contx

end if

end for

D

u

a

t

m

i

fi

f

p

r

a

t

d

S

3

f

i

t

fi

g

l

g

o

t

i

m

l

l

d

d

t

s

v

a

m

t

A

g

v

b

m

H

(

t

m

t

e

e

t

e

f

s

h

a

l

b

n

e

t

f

i

i

i

o

t

t

n

h

i

g

b

m

c

n

v

o

i

A

i

C

p

0

t

n

a

v

m

s

A

fi

n

F

i

We used the classic Context-triggered hashing algorithm: SS-

EEP (Kornblum, 2006) in the static filter. The piece-wise hash

ses an arbitrary hashing algorithm to create many checksums for

 file instead of just one. Rather than generating a single hash for

he entire file, a hash is generated for many discrete fixed-size seg-

ents of the file. SSDEEP algorithm has non-propagation character-

stics and alignment robustness, which ensures that the two binary

les can still generate similar hash values in the case of small dif-

erences. We defined the static filtering method as SHASH.

Although static filters can filter malware with the same attack

ayload, it does not work for some packer types in malware. The

eason is that these packers shift the position of the actual OEP to

nother section (not the section of the real OEP), which changes

he action object of the static filter. Therefore, when the packer

etection component detects the binary packed, we calculate the

SDEEP hash value of the whole file.

.3. Feature extraction module

Running malware in sandboxes can observe its behavior and ef-

ect on the system. This strategy will examine various extracted

nformation from the system while executing the malware, such as

he registry key modification, the accessed/modified and dropped

les, newly created and accessed processes (i.e., Application Pro-

ramming Interfaces, APIs), and kernel-requested services. But ma-

icious software to avoid sandbox execution and dynamic debug-

ing, often adds some branch execution, delays execution, and

ther means of confrontation. For example, when malware de-

ects that the runtime environment is a VMWare virtual machine,

t will immediately end the program, or non-malicious code frag-

ents will be executed. Therefore, to capture the behavior of ma-

icious software as much as possible, we adopt an enterprise-

evel sandbox based on the out-of-box mechanism. The sandbox is

eveloped based on hardware virtualization technology, software

ynamic analysis technology, and control flow integrity analysis

echnology. It is superior to Cuckoo sandbox and other common

andbox based on in-box analysis mode in terms of analysis en-

ironment transparency, behavior analysis granularity, and sample

nalysis ability.

In the sandbox report, API is capable of holding enough infor-

ation about programs and their behavior as it provides access

o the essential resources that are available to the kernel system.
5
PI has two main parts, the function name, and parameters (ar-

uments). The function name is a predefined list of APIs that de-

elopers can hook when developing sandboxes (Sandbox) , and it

elongs to different categories (i.e., administration and manage-

ent, Windows user interface, and networking Microsoft, 2023a).

owever, function parameters are very complex and heterogeneous

e.g., integers, strings, and address pointers). Since it might be

oo difficult to analyze, the parameters generally are ignored in

ost API-based malware feature extraction studies (David and Ne-

anyahu, 2015; Euh et al., 2020; Kolosnjaji et al., 2016; Pascanu

t al., 2015). However, it still needs to be pointed out that mod-

ls built only by APIs without parameters are blind. The reason is

hat the parameters of the same API function can express differ-

nt semantics, but the parameters corresponding to different API

unctions can also express the same semantics. Therefore, it is not

uggested to build only by the API function name, which cannot

elp to distinguish the real attack intention behind the malware

uthor.

For example, we have been investigating the persistence of ma-

icious samples in the Windows system, as shown in Table 2 . It can

e seen that the establishment of persistence is varied, the combi-

ation of different APIs and different parameters can produce the

ffect of persistence execution. Malicious samples can be persisted

hrough the registry, file directory, process commands, Office de-

ault template, and auto-start scripts. Therefore, it is necessary to

dentify behavior semantics behind a single API.

To identify the real behavior semantics behind each API, we

ntroduced the concept of the ontology (Smith and Welty, 2001)

n the knowledge graph. Malware ontology is a knowledge model

f the malware domain, it contains all relevant concepts related

o malware individuals, malware behaviors, and computer sys-

em components. Therefore, we extracted caller names, function

ames, function parameters, and function return values in the be-

avioral report. And we further constructed a four-tuple as shown

n Fig. 2 . The caller name class defines which executable pro-

ram calls the current API. Besides, the executable program may

e the initial running malware, the software released/modified by

alware, or normal software. The computer system component

lass defines the classification architecture of computer compo-

ents, which includes all system component subclasses and indi-

iduals. The behavior class explains the classification architecture

f malware behaviors, which includes different types of behav-

ors. The returned class defines the return value of the current

PI, which includes zero and non-zero. In this way, the behav-

oral semantics of a single API can be described as four-tuple: <

al l er _ name, AP I _ name, AP I _ exin f o, AP I _ ret > . A self-reading exam-

le: < 22703.file.exe, NtReadFile, C: \ program \ 71733 \ 22703.file.exe,

 > .

Abstractly, we used the semantic transformation method to ob-

ain prior knowledge in the following two ways:

• Reverse, the feedback of Windows kernel API docu-

ment (Microsoft, 2023b) and ATT&CK Matrix (MITRE) .

• Positive, the feedback of real example in C language under the

guidance of Windows user API document (Microsoft, 2023a).

Firstly, we processed and classified the API name (function

ame). The API name was represented by a string of words, such

s “NtCreateFile”. In addition, some of the API names ended with

arious suffixes such as Ex, A, W, ExA, and ExW. Then we re-

oved such suffixes to ensure that the extracted features were re-

ilient against the conflict of using multiple versions of the same

PI call. To deal with heterogeneous API parameters, we classi-

ed API representing different domain functions, such as “Inter-

etCrackUrl” and “DnsQuery” into the network function, “NtDelete-

ile” and “NtOpenFile” into the file function. Secondly, we tried to

dentify the parameters of APIs with different functional areas, as

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

Table 2

Different expressions of persistence technology.

API Name Parameters Values Type

NtSetValueKey HKEY_CURRENT_USER \ \ Windows \ CurrentVersion \ Run Register

CreateProcessInternal C: \ Windows \ system32 \ reg.exe add Autorun_key Process

NtWriteFile C: \ Users \ jack \ AppData \ Roaming \ \ Start Menu \ Programs \ Startup Folder

MoveFileWithProgress C: \ Users \ jack \ AppData \ Roaming \ Microsoft \ Templates \ Normal.dotm Office

CopyFile C: \ autorun.inf Script

Fig. 2. Conceptual model of malware ontology.

Table 3

Part of the class structure of system components.

Functional Categories Parameters Type Instance

File Prefetch File C: \ Windows \ Prefetch

Browser Privacy File C: \ Documents and Settings \ Local Settings \ Application Data \ Chrome

System Winhelp File C: \ Windows \ winhelp.exe

Email File C: \ Documents and Settings \ Address book

Registry AutoRun Key HKEY_CURRENT_USER \ SOFTWARE \ \ CURRENTVERSION \ RUN

Hidden Key HKEY_LOCAL_MACHINE \ SOFTWARE \ \ FOLDER \ HIDDEN \ SHOWALL

Image Hijack Key HKEY_LOCAL_MACHINE \ SOFTWARE \ \ IMAGE FILE EXECUTION OPTIONS

System Software Setup Key HKEY_LOCAL_MACHINE \ SYSTEM \ CONTROLSET001 \ SERVICES

Service Message Service Messenger

Terminal Service TermService

Network Service Rasman

Sound Service AudioSrv

Network Local Net 127.0.0.1

0.0.0.0

localhost

Inner Net 10.0.0.1

192.0.0.1

External Net www.google.com

221.226.65.138

Process Batch cmd C: \ Windows \ system32 \ cmd.exe

Reg C: \ Windows \ system32 \ reg.exe

Rundll32 C: \ Windows \ system32 \ rundll32.exe

CUI C: \ Windows \ system32 \ conime.exe

Register DLL C: \ Windows \ system32 \ regsvr32.exe

s

s

r

m

l

n

r

t

t

a

calls that cannot be matched by rules as normal behavior.
hown in Table 3 . We used the regular expression to transform

pecific heterogeneous parameters of system components into pa-

ameter types. The function parameters of some specific API were

ore than one, so the system component in the four-tuple is a

ist. Thirdly, we also processed the return value and gave it zero or

on-zero forms. We adopted the above steps to extract useful and

efined information from the four-tuple. At the same time, seman-

ic matching is carried out with the extracted four-tuple informa-

ion.

In addition, we also formulated some rules as shown below to

ssist the semantic translation.

• The self-reading, self-deleting, self-modifying, and a series of

self-operating behaviors are defined which are mainly caused

by functions such as NtReadFile, NtCreateFile, and NtDeleteFile.

The key to this semantics is whether the caller name and pa-

rameter are the same.
6
• The rename semantics is defined, which is generally caused by

the MoveFileWithProgress function. The key to this semantics is

whether the directories of the two parameters in the parameter

list are the same.

• The excessive behavioral semantics is defined, which means

that the malware runs a single API more than 1500 times in the

sandbox. According to the types of API, we divide the semantics

into normal excessive behaviors and abnormal excessive behav-

iors. Some details are shown in Table 4 .

• The two semantics of finding files and obtaining file attributes

are mainly caused by functions such as NtQueryAttributesFile,

NtQueryDirectoryFile, and NtQueryFullAttributesFile. The key to

distinguishing the two semantics is whether the return value of

the function is zero.

• To highlight the malicious behavior of samples, we define the

http://www.google.com

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

Table 4

Partial API list of different excessive behavior types.

Type of Behavior API Name

Normal too many behaviors NtReadFile

NtQueryAttributesFile

LoadLibrary

GetComputerName

DnsQuery

Abnormal too many behavior CreateProcessInternal

RegOpenKey

KiTrap0D

NtAdjustPrivilegesToken

VMDetect

3

m

t

q

t

i

c

c

t

b

e

t

2

t

m

b

a

t

c

d

M

s

u

a

W

h

i

p

W

p

t

s

p

f

d

s

t

e

s

e

u

i

t

t

c

f

f

d

o

s

d

M

3

t

g

f

d

t

m

s

s

d

c

w

a

t

d

s

s

t

o

t

t

a

l

c

t

s

b

h

4

m

.4. Cluster module

After converting the dynamic behavior report into behavior se-

antic sequence, the RecMaL framework performed the feature

ransformation and the clustering on the behavior semantic se-

uence, and further analyzed and cleaned labels according to clus-

ering results.

Preprocessing . After transforming the original sandbox report

nto a semantic sequence, we found a large number of repeated

all sequences. We first performed [1,4]-gram sequences dedupli-

ation, retaining only the first consecutive sequence. At the same

ime, to avoid the uncertain conclusion caused by the small num-

er of sample behaviors, which may be due to the lack of specific

nvironments required by malicious samples in sandboxes, we fil-

er the samples with the kinds of behavioral semantics less than

0 or run crashes.

Embedding . To better vectorize sandbox reports, we evaluated

he advantages and disadvantages of a large number of language

odels that learn vectors from documents. For example, the word

ag model will lose information about word order in the document

nd will not try to learn the meaning of potential words; Although

he Word2Vec model can learn the meaning of potential words,

alculating a vector for the entire document will introduce other

efects. Therefore, we use the paragraph vector model (Le and

ikolov, 2014) to map the semantic sequence into the vector

pace. Specifically, the paragraph vector model can calculate a doc-

ment as a low-dimensional vector representation, which is usu-

lly better than the word vector superposition or average of the

ord2Vec model.

Clustering algorithm . Specifically, we implemented a

ighly parallel version of hierarchical agglomerative cluster-

ng (Müllner, 2011), which has been recently given theoretical sup-

ort for its ability to generate high-quality clusters (Moseley and

ang, 2017). This clustering algorithm only needs to set one

arameter and a distance threshold to determine when to cut the

ree of clusters(i.e., when to stop creating smaller and smaller

ubclusters). However, the choice of deciding when to cut de-

ends mainly on the similarity between the behaviors of malware

amilies.

Distance threshold . Generally speaking, a higher value of the

istance threshold generates fewer but larger clusters, whereas a

maller value yields more but smaller clusters. Therefore, the set-

ing of distance threshold cannot rely on simple subjective experi-

nce. It should be noted that there must be a considerable part of

ample label errors in the malware dataset, and there is a dynamic

volution of malware behavior in the same family. Therefore, if we

se the maximum average distance as the distance threshold, more

mpurities will be introduced. To obtain a relatively scientific dis-

ance threshold, we use a method called Median Absolute Devia-

ion (MAD) (Leys et al., 2013). As shown in Formula (2) . Firstly, we

alculate the average Euclidean distance of all samples under each

amily label and calculate the median of the average distance of all
7
amilies. Secondly, we calculate the difference between the average

istance to the median for each family. Finally, MAD is the median

f the absolute value of these differences. As a measurement of

tatistical deviation, MAD is more suitable for capturing outliers in

ata sets than the standard deviation.

AD = med ian (| X i − med ian (X) |) (2)

.5. Label rectification

The type of label error. When we use an unsupervised clus-

ering algorithm to get specific malware clusters, it means that we

ather malicious samples with high behavioral similarities. There-

ore, when the family labels in a cluster are not unique, we will

iscuss whether the labels in the cluster are appropriate. There are

hree specific cases:

• Label errors occur when a class exists in the dataset that is

more appropriate for an example than its given class.

• Ontology issue is that the same malware belongs to different

family names, while these family names can be replaced by

each other. In other words, the ontology issue is the malware

family alias problem. For example WannaCry and WannaCryp-

tor.

• Multi-label malware has more than one label in the malware

dataset. These labels belong to different categories of detection

names. For example Lamber and Autorun.

Rectifying labels can improve the classification accuracy of

achine learning. We first used RecMaL to perform family clas-

ification on samples of the BODMAS dataset. In the clustering re-

ults, if the samples in a certain cluster contain more than two

ifferent family labels, we think that some of the labels need to be

orrected. After classifying samples from BODMAS using RecMaL,

e found some labels that may need to be corrected. The detailed

lgorithm description is shown in Algorithm 2 . To find and correct

hese labels, we mainly introduce three distances.

1. The first distance. The average Cosine distance of all samples

under each family label

2. The second distance. The average Cosine distance of each sam-

ple in the inconsistent clue cluster to the other samples of its

family.

3. The third distance. The average Cosine distance of each sample

in the inconsistent clue cluster to the other samples under that

cluster. The purpose of introducing the third distance is to find

the most central part of the sample in the cluster.

❶ If the second distance of a sample is smaller than the first

istance, it is considered that the original BODMAS label of the

ample is more reasonable. Otherwise, it is considered that the

ample may need to be revised. For every inconsistent clue cluster

hat needs to be relabeled, it is necessary to first judge the status

f the cluster.

❷ If there is only one family with a reasonable sample label in

he cluster, then use the label of this family to correct all samples

hat need to be revised. If there are multiple families with reason-

bly labeled samples in the family cluster, rank these samples from

arge to small according to the third distance of these samples. The

orresponding ranking of each sample is their score, which means

hat the smaller the third distance of the sample, the higher the

core. Count the sum of the scores of samples with reasonable la-

els under each family and use the label of the family with the

ighest score to correct all samples that need to be revised.

. Implementation

The framework of RecMaL mainly consists of the following four

odules.

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

Algorithm 2 Label Rectification.

Input: Samples //features and labels of BODMAS dataset

Input: cluster //clustering results output by RecMaL

Output: newlabel //sample labels corrected using the algorithm

for e v er ycluster.e v er ysample do

if sample.secdis ≤ sample. f irdis then

sampl e.l abel ← T rue

else

sampl e.l abel ← F al se

end if

end for

for e v erycluster do

cl uster.true _ l abel ← dict()

for e v erysample do

if sampl e.l abel then

cl uster.true _ l abel .ad d (sample. fam)

end if

end for

cl uster.true _ l abel ← l ist(cl uster.true _ l abel)

end for

for e v er ycluster.e v er ysample do

if sample.label == False then

if l en (cl uster.true _ l abel) == 1 then

sampl e.newl abel ← cl uster.truel abel [0]

else if l en (cl uster.true _ l abel) > 1 then

Sort sample.rank By sample.thidis

sample.score ← sample.rank

for cl uster.true _ l abel do

family.score ← Sum(current _ famil y.sampl e.score)

end for

sampl e.newl abel ← cl uster.maxscore _ fam

else

sampl e.newl abel ← sampl e. fam

end if

end if

end for

4

R

c

t

D

o

p

n

w

m

h

i

t

h

d

r

t

M

f

t

i

o

s

c

t

e

4

p

d

o

e

o

t

g

5

t

i

a

c

a

b

w

t

5

w

s

f

s

b

a

t

a

n

t

u

T

f

p

t

o

B

M

g

.1. Embedding and clustering details

To find the label errors in the malware dataset, we run the

ecMaL framework in the BODMAS dataset. We progressively pro-

ess the BODMAS dataset according to the RecMaL workflow. In

he word embedding stage, we use the PV-DBOW model in the

oc2Vec model. Compared with PV-DM, this model can further

mit the words in the window and use the paragraph vector to

redict any words in the text. The PV-DBOW model is of great sig-

ificance for highlighting the different behaviors of different mal-

are families. Specifically, in the process of training the Doc2Vec

odel, we configure the frequency of random downsampling of

igh-frequency words as not 1e-5, the window size used is 10, the

nitial learning rate is set to 0.025, and the words with lower to-

al frequency are never ignored. The training period is 20, and the

ierarchical softmax method is used to train and finally map the

ocument mapped to semantics to the document embedding rep-

esentation of 2048.

In the hierarchical agglomerative clustering algorithm, we use

he critical point of anomaly value automatically generated by the

AD method as the distance threshold, and finally, the RecMaL

ramework clusters the remaining 31,121 samples into 16,550 clus-

ers. Statistics show that in all clusters, there are 3611 clusters with

nconsistent family labels. Therefore, to measure the effectiveness

f the clustering algorithm, we only manually check the behavior

imilarity of sandbox reports by a 1:10 random sampling ratio of

lusters with inconsistent labels. Through our manual verification,
8
he behavior similarity clustering method of RecMaL framework is

ffective and accurate.

.2. Positioning label issue types

Firstly, we calculate the average Euclidean distance of all sam-

les under each family label. Secondly, we calculate the average

istance of each sample in the inconsistent clue cluster to the

ther samples of its family and compare this distance with the av-

rage distance of its family to determine whether the sample is an

utlier.

• If all samples in inconsistent cues are not outliers, we consider

that the case belongs to a multi-label or malware alias. When

the average distance of these families does not exceed the dis-

tance threshold, that is, they belong to high cohesion family la-

bels, they should be malware alias types, otherwise they are

multi-label types.

• if there are samples in inconsistent cue clusters belonging to

outliers, samples belonging to normal points, we consider that

the case belongs to the label error, and rectify the label of the

abnormal point family to the label of the normal point family;

• If all samples in inconsistent cues are outliers, the RecMaL

framework cannot infer the ground truth of these samples ac-

cording to the existing basis, so RecMaL does not do anything.

But the RecMaL framework will throw out these outliers so that

security analysts can pay more attention to these samples’ la-

bels.

According to the above steps, the RecMaL framework finds a to-

al of 300 label errors, 58 malware family alias label pairs, and 6

eneral tokens of the multi-label.

. Evaluation

We claim that static filter components in the framework can fil-

er malware with the same attack payload, and feature and cluster-

ng modules can embed behavior semantic documents and gener-

te high-quality clusters for label rectification. In this section, we

onduct experiments to evaluate each component of RecMaL. We

nalyze the differences between the clusters and the differences

etween labels in the same cluster from the dataset. In addition,

e verify the effectiveness of label rectification, via setting abla-

ion experiments on malware family classification.

.1. Datasets

Internal dataset. In our experiment, we investigate real mal-

are (excluding normal software), which is collected from a large-

cale security vendor (for anonymous). The dataset is collected

rom July 2020 to December 2020, including 208,124 malicious

amples. It should be noted that if malicious samples are collected

ased on time, we may not able to guarantee that each SHASH is

ssociated with enough samples, nor can we evaluate the effec-

iveness of the same SHASH. Therefore, we decided to take SHASH

s the guide and to collect malicious samples to ensure that the

umber of each SHASH should be more than 100. At the same

ime, we got the VirusTotal detection reports of all samples and

sed the AVCLASS2 tool to label family labels and other attributes.

he dataset included 67 different families (e.g. blackmoon, sytro,

earso), and all malicious samples were based on the Windows

latform. The labels for this dataset only involve labels based on

he traditional family category. We only evaluate the performance

f Static filtering components on this dataset.

External dataset. We introduce a well-labeled external dataset

ODMAS (Yang et al., 2021a), According to the authors, the BOD-

AS dataset contains 57,293 malware samples collected from Au-

ust 2019 to September 2020, with carefully curated information

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

Fig. 3. Number of malware samples with each SHASH ID.

Fig. 4. Scatter plot of Jaccard distance of SHASH-related samples.

o

n

p

t

p

5

p

t

o

h

t

o

s

m

t

m

o

f

s

w

o

r

t

t

J

i

fi

c

a

p

c

d

i

fi

s

t

t

l

d

n 581 families. And the family label is mainly obtained by inter-

al scripts similar to AVCLASS (Sebastián et al., 2016), but a small

ortion (about 1%) of malware was labeled via manual analysis of

he binaries. We try to use the RecMaL to further analyze the label

roblems on the dataset.

.2. Static filter performance

Filter effectiveness. In this section, we conduct the relevant ex-

eriment on our internal dataset to evaluate the effectiveness of

he static filter. Please note that AV labels are not credible (maybe

ccur label errors), thus we use the distance of the dynamic be-

avior semantics kinds of relevant samples under the same SHASH

o measure the effectiveness of static filters. We make statistics

n the remaining samples after preprocessing. And the number of

amples associated with each SHASH value is shown in Fig. 3 . The

ajority of the malicious samples associated with SHASH are more

han 200. We construct a bag of words model for all behavioral se-

antic sequences and then calculate the average Jaccard distance

f the associated samples under each SHASH. The Jaccard distance

ormula is shown in Eq. (3) . The Jaccard distance scatters plot is

hown in Fig. 4 . It can be seen that most of the SHASH associated

ith the behaviors of malicious samples are highly consistent, and
9
ccasionally there is a big difference because the sandbox does not

un out of all the behaviors of the sample. In a words, it explained

hat the static filter in the RecMaL framework could effectively fil-

er malware with the same attack payload.

accard(A, B) = 1 − | A ∩ B |
| A ∪ B | (3)

Filter efficiency. In this section, we conduct the relevant exper-

ment on BODMAS dataset to evaluate the efficiency of the static

lter. First we perform the packer detection on this dataset to ex-

lude the effect of packed on the static filter. The detection results

re shown in Fig. 5 , in which more than 40% of the malware sam-

les are packed. For these samples, the static filter does not pro-

ess them because the real entry point of the program can not be

etermined. We also found a small number of samples with errors

n the file format parsing, which were not processed by the static

lter and are described separately in the Table 5 . We performed

tatic filtering on the remaining samples, and as shown in Table 5 ,

he filtering efficiency of the uncased samples reached 82.0%, i.e.,

here were only 5736 groups of malware with different attack pay-

oads among the 31,805 samples. Even when viewed on the entire

ataset, the filtering efficiency reaches an impressive 45.5%.

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

Fig. 5. Statistical result of packed samples in BODMAS.

Table 5

The detail of SHASH filtering effect.

Amount Proportion SHASH Filter Type

24,235 42.3% 24,235 0% Packer

1251 2.2% 1251 0% Unparse

31,805 55.5% 5736 82.0% Unpacker

57,291 100% 31,222 45.5% Total

S

m

p

s

m

a

b

a

T

e

A

t

c

I

r

Table 6

SHASH in terms of accuracy and efficiency compared to other methods.

Method \ Metrics Accuracy(Purity) Hashes Number Efficiency

ImpHash 0.81971 4036 92.955%

PeHash 0.88436 7029 87.731%

Vhash 0.89166 7632 86.679%

Authentihash 1.00000 57,072 0.382%

SHASH 0.97235 31,222 45.503%

5

o

B

(

p

t

s

t

c

i

o

r

d

m

fi

f

e

f

Comparison with state-of-the-art methods. We compared the

HASH algorithm with several of the most widely used hashing

ethods in the current industry on the BODMAS dataset. We com-

are the purity metrics (Rao and Josephine, 2018) on different re-

ult sets to measure accuracy and the number of hash clusters to

easure the efficiency of filtering.

• ImpHash (MANDIANT) . The method is used specifically for

Portable Executable (PE) files and is based on the PE import ta-

ble contents. Since the behavioral capabilities of malware are

indicated by imports function, it is hoped that hash values

would be consistent across samples with related behavioral ca-

pabilities.

• PeHash (Wicherski, 2009). The method hashes the PE exe-

cutable for selected fields that are not easily influenced by

changes during compilation and packing, such as the initial

stack size.

• Vhash (VirusTotal, 2023a). The method is a similarity clustering

algorithm inside VirusTotal. It is based on a simple structural

feature hashing algorithm for finding similar binary samples.

• Authentihash (VTAPI) . The method used to verify that the rele-

vant sections of a PE image file have not been altered by calcu-

lating the PE image excluding certificate related data and over-

lay.

• SHASH. Our method calculates the fuzzy hash of a binary file

by analyzing its file structure and extracting its most important

section representation.

Higher purity values indicate fewer anomalies in the clusters

nd higher accuracy of the hashing algorithm. The smaller num-

er of hashes indicates that the algorithm can find fewer same

ttack payloads and the more efficient the filtering. As shown in

able 6 , although the ImpHash method achieves 92.9% in filtering

fficiency, its accuracy is the worst with only 0.82. Meanwhile, the

uthentihash method, although its accuracy is the highest, its ac-

ual filtering efficiency is the worst at 0.38%. In a comprehensive

omparison, our SHASH algorithm balances accuracy and efficiency.

t maximizes the filtering efficiency while ensuring a high accuracy

ate.
10
.3. Dynamic clustering performance

To verify the performance of RecMaL, we compare the results

f several representative malware classification methods on the

ODMAS dataset and measure the Adjusted Mutual Information

AMI) (Vinh et al., 2010) metrics on different result sets. In the next

art of this section, we briefly describe these selected methods and

he details of the result set used to measure AMI metrics. The rea-

on we use AMI as a judgment is that while the original tags of

he samples are not entirely correct, most of them should be ac-

urate. In the absence of accurate sample labels, we use the cred-

ble BODMAS dataset and the malware labeling tool AVCLASS to

bserve the clustering quality of different methods. In past studies,

esearchers have proposed different feature extraction methods to

escribe the behavior of malicious samples, but these features are

ainly used for malware identification instead of malware classi-

cation. We tried to reproduce these feature extraction methods

or family classification and compared the AMI of different feature

xtraction methods on different datasets.

• Baseline. This method extracts sequences of API call from mal-

ware reports and map them directly into feature vectors. These

vectors are then learned through Doc2Vec to generate feature

vectors.

• Sample Hashing (Zhang et al., 2020b). The method extracts key

fields from malware sample running reports and map them to

unique hash-like vectors. These vectors are filtered and com-

bined to form the final sample features.

• Malheur (Rieck et al., 2011). The method extracts short behav-

ioral patterns from malware samples to capture some of the

underlying program semantic.

• Malware Fusion (Wang et al., 2021). The method performs

sample filtering based on the API call sequence and use the n-

gram model to remove API combinations with low occurrence

rates.

• Semantic Features. Our approach analyzes API calls and pa-

rameter combinations to judge their behavior and generate se-

mantic information needed for RecMaL.

Meanwhile, we not only compare the AMI information of dif-

erent feature methods, we also add Fare framework (Liang et al.,

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

Table 7

The AMI metric results on all comparison experiments.

Method \ Label BODMAS AVCLASS(direct) AVCLASS_retrain-1 AVCLASS_retain-2 AVCLASS2 AVCLASS2_retrain

API + Agg. 0.642 0.654 0.665 0.663 0.658 0.665

API + Fare 0.399 0.321 0.325 0.323 0.324 0.323

HASH + Agg. 0.638 0.648 0.659 0.658 0.649 0.655

HASH + Fare 0.39 0.393 0.399 0.399 0.395 0.405

malheur + Agg. 0.687 0.712 0.719 0.720 0.714 0.718

malheur + Fare 0.428 0.436 0.436 0.441 0.438 0.444

Fusion + Agg. 0.781 0.746 0.745 0.745 0.752 0.754

Fusion + Fare 0.383 0.325 0.328 0.322 0.327 0.323

Semantic + Agg. 0.817 0.738 0.749 0.75 0.74 0.744

Semantic + Fare 0.387 0.323 0.322 0.321 0.328 0.324

2

i

c

w

M

d

t

A

a

u

c

a

M

t

m

a

a

A

t

a

t

i

h

s

a

h

a

s

s

v

t

a

t

t

t

b

t

o

c

a

s

f

5

r

f

t

m

e

n

fi

s

f

c

6

m

M

i

s

w

t

1

t

T

M

a

B

i

6

u

m

r

n

021) to compare the advantages and disadvantages of cluster-

ng algorithms. Fare is an aggregation framework for unsupervised

lassification models. It aims to perform classification on datasets

ith low-quality labels.

Ground-truth establishment. Since the labeling of the BOD-

AS dataset is not its ground-truth, we introduced a variety of

ifferent labeling results to simulate the most similar ground-

ruth. These label results are given by the AVCLASS tool and the

VCLASS2 tool, which are currently the most advanced tools in

cademia.

1. AVCLASS (direct) Label BODMAS samples using the AVCLASS

default thesaurus.

2. AVCLASS (retrain-1) Use BODMAS samples with default nalias

and talias parameters to retrain the thesaurus before AVCLASS

labeling. These two parameters are used to control the associa-

tion between label words.

3. AVCLASS (retrain-2) Use BODMAS samples to retrain the the-

saurus before AVCLASS labeling. The nalias and talias parame-

ters are changed to 100 and 0.98 to reduce the frequency of

associated tags.

4. AVCLASS2 (direct) Label BODMAS samples using the AVCLASS2

default thesaurus.

5. AVCLASS2 (retrain) Use BODMAS samples with default param-

eters to retrain the thesaurus before AVCLASS2 labeling. We no

longer adjust the parameters of AVCLASS2 because its retrain-

ing needs to provide the correct labels of the original samples

to achieve better results than AVCLASS.

The experimental results are shown in Table 7 . The method

sed by RecMaL has the highest AMI among all methods when

ompared with the BODMAS result set. Its AMI result on AVCLASS

nd AVCLASS2 result set is also higher than all methods except

alware Fusion.

Although the AMI does not directly represent the accuracy,

he BODMAS dataset is partly manually verified which makes it

ore reliable. It should be noted that the AMI indicator is not the

ccuracy as the actual classification, we only use this indicator for

uxiliary analysis. While Malware Fusion achieves a slightly higher

MI on AVCLASS, we prefer this because of the limitations of the

agging tool. One of the reasons is that the gap between AVCLASS

nd AVLCASS2 and their retraining results is very small, indicating

hat the tool does not learn enough useful information from the

nput samples. In contrast, the results of BODMAS contain some

uman-verified labels, and we have reason to believe that the re-

ults on the BODMAS set are more accurate than those on AVCLASS

nd AVCLASS2. Therefore, the Semantic Feature that achieved the

ighest AMI result on the BODMAS set also shows that RecMaL has

 better performance.

Unsupervised model ensemble frameworks like Fare are not

uitable for multi-class and few-shot tasks. Another notable re-

ult is that using the Fare clustering framework leads to lower AMI

alues for malware classification. We believe that this is due to
11
he characteristics of Fare itself: Fare is suitable for more samples

nd Classification with fewer classes in the original implementa-

ion. BODMAS itself has more than 500 different malware family

ags and 57,293 malicious samples. Compared with the experimen-

al project data provided by Fare itself, there are too many types to

e classified and too few samples are provided, which is an impor-

ant reason for Fare’s low AMI.

We also notice Malheur can achieve higher AMI results than

ther methods when using Fare for clustering. We think this is

aused by the Malheur’s characteristics having more dimensions

nd having traits that resemble one-hot encoding. This finding also

uggests that sparse matrices may make input data more suitable

or Fare.

.4. Family label rectification

After correcting the labels, we used the original static features

eleased by the authors of the BODMAS dataset to input a random

orest algorithm for training. The results show that after correcting

he label through RecMaL, the accuracy of the machine learning

odel trained using the original BODMAS data set has increased.

To verify the effect of label correction, we use the random for-

st classifier with default parameter settings to test on the origi-

al feature dataset of BODMAS. The experimental results using the

ve-fold verification method show that the accuracy of the clas-

ifier improved from 79.3% to 81.2%. This shows that even if the

eatures provided by RecMaL are not applied, correcting the labels

an slightly improve the accuracy of the Classification result.

. Findings on BODMAS

In this section, we focus on the main label issues found when

anually analyzing the inconsistency in family labels between Rec-

aL and BODMAS. To make it more clear, we follow the nam-

ng method of Northcutt et al. (2021a) for the malware label is-

ues, including label error, ontology issue, and multi-label mal-

are, as they have applied a thorough empirical study to figure out

he label issues on the famous picture datasets, such as CIFAR-

0. To provide a clearer visual illustration, we list the informa-

ion of associated examples for each labeling issue shown in the

able 8 . Column 1 denotes the ID of the case, column 2 denotes the

D5 of malware samples, column 3 denotes the packed techniques

dopted by the attackers, column 4 denotes the label provided by

ODMAS, column 5 denotes the ground truth of the malware fam-

ly, and column 6 denotes the type of malware mislabel.

.1. Label error

Observation: Based on our research, packed malware samples

sually cause to be mislabeled. According to Table 8 , the first

erged row with ID ’0’ represents a pair of examples for label er-

or, of which one is unpacked, and another is packed with tech-

ique tElock . To figure out the root cause of mislabeling issue, we

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

Table 8

Examples of each label issue.

ID Sample MD5 Packed Detection BODMAS Label Ground Truth Case Type

0 0fad413e6972bacbe6834816cc57b200 unpacked wabot wabot Label error

c40dba3c0dbf66c55328780fd79261e5 tElock sfone

1 0dca70cd568f819ef3e882430ae7fcab VMProtect lightmoon \ Ontological

b3be6e5663d07bd52d21b7653f28fdb4 VMProtect moonlight

2 a2ec2928668aa5463612658fd610ebba Petite trojan trojan.upatre Multi-label

44375e1153f9b9044ffd7e9cfccedd6f unpacked upatre

m

n

P

t

b

M

u

d

s

c

c

t

p

s

t

p

a

U

p

u

o

r

f

l

v

i

a

t

i

n

i

t

e

s

s

m

h

s

a

6

c

f

r

p

b

M

p

o

a

Fig. 6. Malware alias pairs.

i

b

a

t

t

t

t

i

n

i

i

r

c

b

g

i

b

o

c

w

m

6

l

i

a

w

b

s

b

o

u

b

p

i

b

anually re-investigate the malicious behavior via static and dy-

amic analyses. According to the static scanning result, we find the

E section table of the packed sample has been changed compared

o the unpacked sample, and 88 import functions in the import ta-

le have been reduced to 2 (i.e., function GetModuleHandleA and

essageBoxA). The limited static analysis information seems to tell

s that the samples are different in content and structure, but the

ynamic behavior sequences of the two samples are essentially the

ame, and the file named “sIRC4.exe” are both operated, which is

onsistent with the threat intelligence analysis result of Trend Mi-

ro, concluded as wabot (TRENDMICRO) family.

Finding #1: Packing techniques significantly limit the effec-

iveness of static scanning-only engines. To explore the impact of

acking technology on the classification of malware families, be-

ides the illustrated samples, we perform statistics and analysis on

he packing of samples in the dataset.

According to Fig. 5 , about one-third of malware samples are

acked with 41 kinds of packing techniques, and the top 10

mount packing technique are presented respectively, of which

PX is the most leveraged packing technique. Due to the com-

lexity of the packing technology, there is no automated unified

npacking tool at present, and the face of such a large number

f complex packing technologies will indeed affect the detection

esults of the Anti-Virus engines. Besides packing techniques, ob-

uscation and other countermeasures reduce the risk of real ma-

icious code being exposed to anti-virus engines, which are uni-

ersally used by threat actors to evade engine detection. This also

ndicates that it is difficult for a single detection technology to give

 reliable detection result.

Suggestion: Engines should adopt a multi-layered hybrid de-

ection approach depending on the severity of the malware and

ts attributes. The scanners on VirusTotal only use part of the tech-

ologies from the actual anti-virus products. Rather than enforc-

ng the files, it depends heavily on the detection signatures hit by

hem, without using the memory scanning techniques or dynamic

xecution techniques. As a consequence, relying solely on static

canning techniques to obtain detection results can produce a one-

ided diagnosis of malware. On the premise of balancing perfor-

ance and detection results, we recommend that these potentially

igh-threat samples can be subjected to a secondary hybrid analy-

is based on whether the malware has properties (i.e., packed) that

ffect static detection.

.2. Ontological issue

Observation: Different malware has almost the same mali-

ious behavior, but because the detection results come from dif-

erent engines, they will produce different family classification

esults, that is the naming alias problem. In the malware sam-

le examples belonging to the Ontological type in Table 8 , it can

e seen that the family label of the two samples is quite similar.

oreover, we confirm from the Microsoft’s security intelligence re-

ort (MICROSOFT) that lightmoon and moonlight are two aliases of

ne malware family. To further explore the impact of the family

lias issue, we enumerate some typical alias cases from BODMAS
12
n Fig. 6 , from which we can intuitively find several pairs of la-

els that have a high degree of similarity to the literal view, such

s juched and jushed . Moreover, we find the alias relationship be-

ween the label of qukart and berbew in the alias mapping list from

he AVCLASS tool, which also confirms the existence of aliases on

he other hand.

Finding #2: There is no standard naming paradigm for the

axonomy of the malware family. The main reason for the fam-

ly alias problem is that, on the one hand, there is no authoritative

aming system in the malware community for your reference, sim-

lar to the classification in biology. On the other hand, when defin-

ng family names, there is no authoritative naming system for your

eference. Naming rules under different granularities will confuse

lassification levels.

Suggestion: It is essential to construct a malware family li-

rary as soon as possible to help eliminate malware family ambi-

uity. At present, since there is no standard malware family nam-

ng paradigm as well as no publicly accessible malware knowledge

ase, each anti-virus software vendor detects malware based on its

wn rules and signature corpus. As a result, the omissions and in-

onsistencies in family labels are difficult to eliminate, while mal-

are family aliases are generally common, requiring us to build a

alware family label library as soon as possible.

.3. Multi-label issue

Observation: Malware is marked as multi-family (i.e., multi-

abel) with inclusion relationships, also with different granular-

ty. Note that the multi-label issue is not the same as malware

liases (i.e., ontological issue). Ontological issue denotes that mal-

are is labeled with family labels indicating the same behavior,

ut with different representations. As for the multi-label issue, the

cope of malware covered by these labels is different and cannot

e replaced by each other.

Therefore, the example denoted as multi-label issue in Table 8 ,

ne is labeled as Trojan , and another is labeled as upatre . We man-

ally verify the ground truth of these two samples and find that

oth of the samples should be labeled as upatre . One of the sam-

les can only be analyzed as Trojan via engine scanning due to the

mpediment of the Petite packing technology. Even, though the la-

els of both samples are correct, the hierarchy of the descriptions

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

Table 9

Top3 confidence for predicting upatre samples via 5 fold cross-validation.

Recall@1 Recall@2 Recall@3 Trained?

Model-1 bluteal:0.60 upatre:0.40 kwbot:0.00
√

Model-2 fukru:0.60 upatre:0.40 win32:0.00
√

Model-3 bluteal:0.63 upatre:0.37 botgor:0.00
√

Model-4 ldpinch:0.63 upatre:0.37 kwbot:0.00
√

Model-5 upatre:1.00 ryzerlo:0.00 win32:0.00 ✗

t

f

n

f

c

d

o

w

w

r

l

T

a

t

o

t

t

o

fi

m

T

t

d

s

f

i

b

t

s

i

c

f

i

b

b

s

j

l

i

e

n

t

o

7

d

p

s

t

S

a

i

l

a

m

d

t

i

s

d

n

s

e

s

m

t

r

i

f

R

e

d

t

b

a

i

t

M

r

r

t

i

i

t

8

b

a

a

i

a

c

K

w

f

a

o

H

s

s

c

w

c

L

o which the labels belonged is not uniform. It is well known that

amily Trojan , described as one of the common malware types, has

umerous different subordinate malicious families, including sub-

amily upatre . As a result, it is too coarse-grained as a family label.

Finding #3: There is no consensus on the layering of mali-

ious families between the engines and within the engines. The

etection mechanisms of different modules will hit different types

f malicious features, and these features are not assigned different

eights based on detection capabilities and malware classification,

hich leads to confusion in the level and granularity of detection

esults.

What’s more, the non-unified granularity of malware family

abels confuses the learning-based malware classification models.

o verify our hypothesis, we measure the degree to which the in-

dvertent use of different hierarchies of family labels can confuse

he model. We leverage the sample 3 in Table 8 as the experimental

bject.

We shuffle the data set and divide it into 5 parts equally, each

ime we take 4 of them for training and 1 for testing. To verify

he degree of confusion of the model, we label the experimental

bject as Trojan (upatre in practice) into the data set. After training

ve times via a different combination of data, we use 5 different

odels to infer the malware family. The results are shown in the

able 9 .

Column 2 to 4 separately denotes the Top3 family labels with

he highest confidence and their concrete confidence. Column 5

enotes whether the experimental object sample is in the training

et. According to the result, the prediction confidence of the upatre

amily is 100% when the samples are not partitioned into the train-

ng set, and conversely, the confidence of being predicated on the

luteal, fukru or even ldpinch families will exceed the confidence of

he upatre family, not to mention the family Trojan . Intuitively, the

ame sample appears in the training set, and it is easy to succeed

n inference, but the experimental results show that this is not the

ase. The mixed-use of family labels (e.g., Trojan and upatre) at dif-

erent hierarchies can easily lead to confusion in the model, result-

ng in performance degradation.

Suggestion: The multi-hierarchical family label system should

e included in the output of the detection engine and be valued

y the community. From the above verification results, it can be

een that although the family labels of the parent level (i.e., Tro-

an) include the ones of the child level (i.e., upatre) in the natural

anguage. But in the actual detection process, the malicious behav-

or and static representation of the malware may be quite differ-

nt. Neglect to classify family labels at different hierarchies will

ot only hinder the accuracy and credibility of malware label clus-

ering tools (e.g., AVCLASS) but may even hinder the development

f intelligent virus analysis and detection.

. Discussion

To better contribute to the community, we discuss the future
irection of this issue and the limitation of RecMaL.

3 MD5 of the sample is a2ec2928668aa5463612658fd610ebba.

t

f

a

13
❶ In this work, we focus on rectifying the family labels and

ay less attention to static filter components. Previous studies have

hown that both packing behavior and multi-labeling may reduce

he efficiency of malware sample classification and identification.

ince RecMaL’s focus is mainly on semantic behavior extraction,

ppropriate static filtering and pre-processing of the samples will

mprove RecMaL’s performance by reducing the difficulty of ana-

yzing malware samples. For static analysis of malware, while bal-

ncing performance and efficiency, we could further try to consider

ore modalities (e.g., semantics, context) and more methods (e.g.,

ata-driven) to improve the feature extraction results.

❷ How to reasonably apply advanced algorithm technology in

he field of data mining and machine learning to malware analysis

s also an urgent problem to be solved. Since we used a relatively

imple statistical model in this work, some errors will be intro-

uced. Due to the lack of absolutely accurate sample labels, we

eed to manually check some samples for further analysis. Some

amples that have not been manually verified may have some

xtreme cases, such as unsuccessful runs, resulting in inaccurate

ample reports. This will interfere with RecMaL’s extraction of se-

antic behavior features in malicious samples. In addition, since

he labels of the BODMAS dataset itself are not completely accu-

ate, RecMaL’s also learns some wrong label-related features from

t. Due to the limitations of current malware labeling tools, when

aced with samples labeled with multiple labels by these tools,

ecMaL can only process labels associated with the behavior after

xtracting semantic information.

❸ The irregularity of malware labeling may greatly hinder the

evelopment of intelligent malware analysis. In this work, we try

o solve it in a semi-automatic way, and we hope to rectify the la-

el completely automatically or intelligently. Due to the instability

nd diversity of labeling tools, we decided to define malware by

ts semantic behavior. By comparing several malware feature ex-

raction methods and classification methods, we believe that Rec-

aL has the best performance since it has the highest AMI met-

ic on the human-verified BODMAS dataset. After using RecMaL to

eclassify and correct the labels of malware samples in BODMAS,

he accuracy of training with the original features of BODMAS is

mproved. This result shows that RecMaL can help machine learn-

ng improve the performance of malware classification and labeling

asks.

. Related works

Malware clustering. Sebastián et al. (2016) , Sebastián and Ca-

allero (2020) proposed a tool to label malware at scale, which

utomatically extracted tags from AV labels. The accuracy of this

pproach on known families ranges from 67.5% to 96.3%. Although

t works in a low-cost way, both its own experimental results

nd our evaluation results in this paper prove that the results

an not in turn be used as ground truth for the malware sample.

aczmarczyck et al. (2020) proposed a method named Spotlight,

hich uses a supervised learning method to filter known malware

amilies, then clusters unknown malware by unsupervised method,

nd prioritizes them for further investigation using a scorer to

btain the related data that the security researchers wanted.

u et al. (2013) proposed a malware clustering method based on

tatic features. Bailey et al. (2007) and Bayer et al. (2009) de-

cribe the malware clustering method on dynamic behavior and its

onfiguration file. They run their experiments on large-scale mal-

are samples. Zhang et al. (2017) proposed an ensemble method to

ombine different f eatures for automatic malware categorization.

i et al. (2010) have reported on their investigation of the impact

hat ground-truth selection might have on the accuracy reported

or malware clustering techniques. Li et al. (2017) implemented

n Android malware clustering system through iterative mining of

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

m

t

p

t

w

m

m

fi

h

v

o

t

l

p

t

N

a

b

w

w

A

A

m

t

a

t

m

t

9

b

s

s

s

m

B

t

t

r

v

i

t

o

b

r

m

a

i

d

q

D

c

i

C

&

w

C

Z

Y

D

R

A

A

B

B

C

C

D

D

D

D

E

F

F

F

H

h

H

H

J

K

K

K

K

K

K

L

L

alicious payload and checking whether malware samples share

he same version of the malicious payload. Pitolli et al. (2017) pro-

osed a malware family clustering method based on hybrid fea-

ures and birch algorithm. Rieck et al. (2011) proposed a frame-

ork named Malheur, it extracted short behavioral patterns from

alware to capture underlying program semantics and analyse

alware behavior. Furthermore, according to the experimental

ndings of Pitolli et al. (2017) , Malheur can produce clusters of

igher quality than AVCLASS (Sebastián et al., 2016).

Semantics-based malware features. Yang et al. (2019) sur-

eyed the generation method of malware family features based

n behavioral semantics, performed statistical analysis for the

ypical description in different aspects, and revealed the chal-

enges and its future development prospects. Ding et al. (2019) ap-

lied ontology technique into the malware domain, and proposed

he method for constructing malware behavioral knowledge base.

avarro et al. (2018) proposed an ontology-based framework to

nalyze the complex network and identify characteristics shared

y malware samples. Zhang et al. (2020a) proposed a frame-

ork named APIGraph, which can enhance state-of-the-art mal-

are classifiers with the similarity information among evolved

ndroid malware in terms of semantically equivalent or similar

PI usages. Zhang et al. (2019) proposed a malware identification

ethod that calculates the confidence of association rules between

he abstracted API calls to form behavioral semantics to describe

n application. Naval et al. (2015) proposed an approach for iden-

ifying real malware using asymptotic equipartition property (AEP)

ainly applied in the information-theoretic domain to characterize

he program semantics.

. Conclusion

Based on the fact that the malware dataset has a large num-

er of misstatements in family label description, we conduct the

tudy on the plausibility of malware family labeling from the con-

ensus that malware with similar behaviors should belong to the

ame malware family. For this, we design and construct an auto-

ated tool RecMaL to locate the family mislabeling problem types.

riefly, RecMaL locates the crucial location of malicious samples

hrough static analysis to filter the number of samples, and it maps

he sequence of calls from the underlying system in the sandbox

eport into the corresponding behavioral semantics, and then pro-

ides guidance to the clustering algorithm by calculating the sim-

larity among behaviors to finally rectify malware labels. We find

hree different types of mislabeling issues, including label errors,

ntology issues, and multi-labels. The three different types of la-

eling issues affect more than two thousand samples. When we

ectify the mislabeling in the dataset, with the same features and

odels used, rectifying the label can lead to a 1.9% improvement in

ccuracy. More importantly, RecMaL is significant for complement-

ng the malware family alias knowledge base. Our experiment in-

icates that RecMaL for reducing label noise can provide sufficient

uality to mitigate label inaccuracy in practice.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Wang Yang: Conceptualization, Supervision, Writing – review

 editing, Funding acquisition. Mingzhe Gao: Methodology, Soft-

are, Validation, Data curation, Writing – original draft. Ligeng

hen: Formal analysis, Data curation, Writing – original draft.
14
hengxuan Liu: Software, Investigation, Visualization. Lingyun

ing: Resources, Funding acquisition, Writing – review & editing.

ata availability

Data will be made available on request.

eferences

ghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani, S., Balzarotti, D., Vigna, G.,

Kruegel, C., 2020. When malware is packin’ heat; limits of machine learning

classifiers based on static analysis features. Network and Distributed Systems
Security (NDSS) Symposium 2020 .

v-Test. Malware statistics and trends. https://www.av-test.org/en/statistics/
malware/ .

ailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J., 2007. Au-
tomated classification and analysis of internet malware. In: International Work-

shop on Recent Advances in Intrusion Detection. Springer, pp. 178–197 .

ayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E., 2009. Scalable, be-
havior-based malware clustering. In: NDSS, Vol. 9. Citeseer, pp. 8–11 .

hen, K., Wang, P., Lee, Y., Wang, X., Zhang, N., Huang, H., Zou, W., Liu, P., 2015.
Finding unknown malice in 10 seconds: Mass vetting for new threats at the

google-play scale. In: 24th { USENIX } Security Symposium ({ USENIX } Security
15), pp. 659–674 .

heng Binlin, E.A.L., Jiang Ming, Haotian, Z., 2021. Obfuscation-resilient executable

payload extraction from packed malware. 30th USENIX Security Symposium

(USENIX Security 21 .

avid, O.E., Netanyahu, N.S., 2015. DeepSign: deep learning for automatic malware
signature generation and classification. In: 2015 International Joint Conference

on Neural Networks (IJCNN). IEEE, pp. 1–8 .
ing, Y., Wu, R., Zhang, X., 2019. Ontology-based knowledge representation for mal-

ware individuals and families. Comput. Secur. 87, 101574 .
ucau, F. N., Rudd, E. M., Heppner, T. M., Long, A., Berlin, K., 2019a. Automatic mal-

ware description via attribute tagging and similarity embedding. arXiv preprint

arXiv: 1905.06262 .
ucau, F. N., Rudd, E. M., Heppner, T. M., Long, A., Berlin, K., 2019b. SMART: seman-

tic malware attribute relevance tagging. arXiv preprint arXiv: 1905.06262 .
uh, S., Lee, H., Kim, D., Hwang, D., 2020. Comparative analysis of low-dimensional

features and tree-based ensembles for malware detection systems. IEEE Access
8, 76796–76808 .

ass, A., Backes, M., Stock, B., 2019. HideNoSeek: camouflaging malicious javascript

in benign ASTs. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 1899–1913 .

ord, S., Cova, M., Kruegel, C., Vigna, G., 2009. Analyzing and detecting malicious
flash advertisements. In: 2009 Annual Computer Security Applications Confer-

ence. IEEE, pp. 363–372 .
uller, J., Kasturi, R.P., Sikder, A., Xu, H., Arik, B., Verma, V., Asdar, E., Saltaformag-

gio, B., 2021. C3PO: large-scale study of covert monitoring of C&C servers via

over-permissioned protocol infiltration. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pp. 3352–3365 .

ammad, M., Garcia, J., Malek, S., 2018. A large-scale empirical study on the effects
of code obfuscations on Android apps and anti-malware products. In: Proceed-

ings of the 40th International Conference on Software Engineering, pp. 421–431 .
orsiccq. Detect it easy. https://github.com/horsicq/Detect- It- Easy .

u, X., Shin, K.G., Bhatkar, S., Griffin, K., 2013. MutantX-S: scalable malware clus-

tering based on static features. In: 2013 { USENIX } Annual Technical Conference
({ USENIX } { ATC } 13), pp. 187–198 .

urier, M., Suarez-Tangil, G., Kumar, S., Bissyandé, T., Cavallaro, L., 2017. Euphony:
harmonious unification of cacophonous anti-virus vendor labels for android

malware. In: IEEE/ACM 14th International Conference on Mining Software
Repositories .

oeSandbox. Joe sandbox. https://www.joesandbox.com/ .

aczmarczyck, F., Grill, B., Invernizzi, L., Pullman, J., Procopiuc, C.M., Tao, D.,
Benko, B., Bursztein, E., 2020. Spotlight: malware lead generation at scale. In:

Annual Computer Security Applications Conference, pp. 17–27 .
aspersky, 2020. Kaspersky threats. https://threats.kaspersky.com/en/threat/?view=

hierarchy .
haraz, A., Arshad, S., Mulliner, C., Robertson, W., Kirda, E., 2016. { UNVEIL } : a

large-scale, automated approach to detecting ransomware. In: 25th { USENIX }
Security Symposium ({ USENIX } Security 16), pp. 757–772 .

im, D., Kwon, B.J., Dumitra ̧s , T., 2017. Certified malware: measuring breaches of

trust in the windows code-signing PKI. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1435–1448 .

olosnjaji, B., Zarras, A., Webster, G., Eckert, C., 2016. Deep learning for classification
of malware system call sequences. In: Australasian Joint Conference on Artificial

Intelligence. Springer, pp. 137–149 .
ornblum, J., 2006. Identifying almost identical files using context triggered piece-

wise hashing. Digital Invest. 3, 91–97 .

e, Q., Mikolov, T., 2014. Distributed representations of sentences and documents.
In: International Conference on Machine Learning. PMLR, pp. 1188–1196 .

e Blond, S., Uritesc, A., Gilbert, C., Chua, Z.L., Saxena, P., Kirda, E., 2014. A look
at targeted attacks through the lense of an { NGO } . In: 23rd { USENIX } Security

Symposium ({ USENIX } Security 14), pp. 543–558 .

http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0001
https://www.av-test.org/en/statistics/malware/
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0002
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0003
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0004
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0005
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0006
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0007
http://arxiv.org/abs/arXiv:1905.06262
http://arxiv.org/abs/arXiv:1905.06262
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0008
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0009
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0010
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0011
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0012
https://github.com/horsicq/Detect-It-Easy
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0013
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0014
https://www.joesandbox.com/
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0015
https://threats.kaspersky.com/en/threat/?view=hierarchy
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0016
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0017
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0018
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0019
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0020
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0021

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177

L

L

L

L

L

L

L

M

M

M

M

M

M

M

M

M

M

M

M

N

N

N

N

P

P

R

R

S

S

S

S

S

S

S

t

T

U

V

V

V

V

V
W

W

X

Y

Y

Y

Y

Z

Z

Z

Z

Z
ee, S., Jung, W., Lee, W., Oh, H., Kim, E.T., 2021. Effective dataset construction
method using dexofuzzy based on android malware opcode mining. ICT Express .

eys, C., Ley, C., Klein, O., Bernard, P., Licata, L., 2013. Detecting outliers: do not use
standard deviation around the mean, use absolute deviation around the median.

J. Exp. Soc. Psychol. 49 (4), 764–766 .
i, P., Liu, L., Gao, D., Reiter, M.K., 2010. On challenges in evaluating malware clus-

tering. In: International Workshop on Recent Advances in Intrusion Detection.
Springer, pp. 238–255 .

i, Y., Jang, J., Hu, X., Ou, X., 2017. Android malware clustering through malicious

payload mining. In: International Symposium on Research in Attacks, Intrusions,
and Defenses. Springer, pp. 192–214 .

i, Y., Sundaramurthy, S.C., Bardas, A.G., Ou, X., Caragea, D., Hu, X., Jang, J., 2015.
Experimental study of fuzzy hashing in malware clustering analysis. 8th Work-

shop on Cyber Security Experimentation and Test ({ CSET } 15) .
iang, J., Guo, W., Luo, T., Vasant, H., Wang, G., Xing, X., 2021. Fare: enabling fine–

grained attack categorization under low-quality labeled data. In: Proceedings of

The Network and Distributed System Security Symposium (NDSS) .
oi, N., Borile, C., Ucci, D., 2021. Towards an automated pipeline for detecting and

classifying malware through machine learning. arXiv preprint arXiv: 2106.05625 .
AEC. Malware attribute enumeration and characterization. http://maecproject.

github.io/ .
aggi, F., Bellini, A., Salvaneschi, G., Zanero, S., 2011. Finding non-trivial malware

naming inconsistencies. In: International Conference on Information Systems

Security. Springer, pp. 144–159 .
ANDIANT. Tracking malware with import hashing. https://www.mandiant.com/

resources/blog/tracking- malware- import- hashing .
antovani, A., Aonzo, S., Ugarte-Pedrero, X., Merlo, A., Balzarotti, D., 2020. Preva-

lence and impact of low-entropy packing schemes in the malware ecosystem.
Network and Distributed System Security (NDSS) Symposium, NDSS, Vol. 20 .

icrosoft. Overview of the windows API. https://docs.microsoft.com/en-us/

previous-versions//aa383723(v=vs.85) .
icrosoft. Windows kernel API. https://opdhsblobprod02.blob.

core.windows.net/contents/72a50b11a1b74f26a8d45bfae9461268/
4595a9810a2114ee29054688270d62f8?sv=2018- 03- 28&sr=b&si=

ReadPolicy&sig=Mvbwe9yQ7g1BrlCfYttykDX4FdQnemJectFwr%2FYYScA%3D&st=
2021- 06- 07T14%3A43%3A40Z&se=2021- 06- 08T14%3A53%3A40Z .

ICROSOFT. Worm:win32/lightmoon.h. https://www.microsoft.com/en-us/wdsi/

threats/malware- encyclopedia- description?Name=Worm:Win32/Lightmoon.
H&threatId=-2147347757 .

icrosoft, 2021. Malware names. https://docs.microsoft.com/en-us/windows/
security/threat-protection/intelligence/malware-naming .

irzaei, O., Vasilenko, R., Kirda, E., Lu, L., Kharraz, A., 2021. Scrutinizer: detecting
code reuse in malware via decompilation and machine learning.

ITRE. Att&ck. https://attack.mitre.org/ .

oseley, B., Wang, J., 2017. Approximation bounds for hierarchical clustering: aver-
age linkage, bisecting k-means, and local search. Adv. Neural Inf. Process. Syst.

30, 3094–3103 .
üllner, D., 2011. Modern hierarchical, agglomerative clustering algorithms. arXiv

preprint arXiv: 1109.2378 .
aval, S., Laxmi, V., Rajarajan, M., Gaur, M.S., Conti, M., 2015. Employing program

semantics for malware detection. IEEE Trans. Inf. Forensics Secur. 10 (12), 2591–
2604. doi: 10.1109/TIFS.2015.2469253 .

avarro, L.C., Navarro, A.K., Gregio, A., Rocha, A., Dahab, R., 2018. Leveraging ontolo-

gies and machine-learning techniques for malware analysis into android per-
missions ecosystems. Comput. Secur. 78, 429–453 .

orthcutt, C., Jiang, L., Chuang, I., 2021. Confident learning: estimating uncertainty
in dataset labels. J. Artif. Intell. Res. 70, 1373–1411 .

orthcutt, C. G., Athalye, A., Mueller, J., 2021b. Pervasive label errors in test sets
destabilize machine learning benchmarks. arXiv preprint arXiv: 2103.14749 .

ascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M., Thomas, A., 2015. Malware

classification with recurrent networks. In: 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 1916–1920 .

itolli, G., Aniello, L., Laurenza, G., Querzoni, L., Baldoni, R., 2017. Malware family
identification with birch clustering. In: 2017 International Carnahan Conference

on Security Technology (ICCST), pp. 1–6 .
ao, K.R., Josephine, B.M., 2018. Exploring the impact of optimal clusters on cluster

purity. In: 2018 3rd International Conference on Communication and Electronics

Systems (ICCES), pp. 754–757. doi: 10.1109/CESYS.2018.8724114 .
ieck, K., Trinius, P., Willems, C., Holz, T., 2011. Automatic analysis of malware be-

havior using machine learning. J. Comput. Secur. 19 (4), 639–668 .
andbox, C.. Hooked APIs and categories in Cuckoo. https://github.com/

cuckoosandbox/cuckoo/wiki/Hooked- APIs- and- Categories .
chleimer, S., Wilkerson, D.S., Aiken, A., 2003. Winnowing: local algorithms for doc-

ument fingerprinting. In: Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, pp. 76–85 .
ebastián, M., Rivera, R., Kotzias, P., Caballero, J., 2016. AVclass: a tool for massive

malware labeling. International Symposium on Research in Attacks, Intrusions,
and Defenses .

ebastián, S., Caballero, J., 2020. AVClass2: massive malware tag extraction from AV
labels. In: ACSAC ’20: Annual Computer Security Applications Conference .

mith, B., Welty, C., 2001. Ontology: towards a new synthesis. In: Formal Ontology

in Information Systems, Vol. 10. ACM Press, pp. 3–9 .
preitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J., 2013. Mo-

bile-sandbox: having a deeper look into android applications. In: Proceedings
of the 28th Annual ACM Symposium on Applied Computing, pp. 1808–1815 .

tringhini, G., Hohlfeld, O., Kruegel, C., Vigna, G., 2014. The harvester, the botmaster,
15
and the spammer: on the relations between the different actors in the spam

landscape. In: Proceedings of the 9th ACM symposium on Information, com-

puter and communications security, pp. 353–364 .
echnology institution, Q. A. X.. Tianqiong sandbox. https://research.qianxin.com/

sandbox .
RENDMICRO. Trojan.win32.wabot.disc. https://www.trendmicro.com/vinfo/us/

threat-encyclopedia/malware/trojan.win32.wabot.disc/ .
pchurch, J., Zhou, X., 2015. Variant: a malware similarity testing framework. In:

2015 10th International Conference on Malicious and Unwanted Software (MAL-

WARE). IEEE, pp. 31–39 .
endors, V.. Virustotal vendors. https://support.virustotal.com/hc/en-us/articles/

360 0 01385857- Identifying- files- according- to- antivirus- detections .
inh, N.X., Epps, J., Bailey, J., 2010. Information theoretic measures for cluster-

ings comparison: variants, properties, normalization and correction for chance.
JMLR.org (95) .

irusTotal. Files information about files. https://developers.virustotal.com/reference/

files .
irusTotal. Virustotal. https://www.virustotal.com .

TAPI. authentihash. https://developers.virustotal.com/reference/authentihash .
ang, P., Tang, Z., Wang, J., 2021. A novel few-shot malware classification approach

for unknown family recognition with multi-prototype modeling. Comput. Secur.
106, 102273 .

icherski, G., 2009. peHash: a novel approach to fast malware clustering. 2nd

USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET 09).
USENIX Association, Boston, MA . https://www.usenix.org/conference/leet-09/

pehash- novel- approach- fast- malware- clustering
u, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D., 2017. Neural network-based graph

embedding for cross-platform binary code similarity detection. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Secu-

rity, pp. 363–376 .

ang, L., Ciptadi, A., Laziuk, I., Ahmadzadeh, A., Wang, G., 2021. BODMAS: an open
dataset for learning based temporal analysis of PE malware. 4th Deep Learning

and Security Workshop .
ang, P., Shu, H., Xiong, X., Kang, F., 2019. Semantic-based malware behavior de-

scription: Past and future. In: Proceedings of the 2019 the 9th International
Conference on Communication and Network Security, pp. 11–19 .

ang, S., Cheng, L., Zeng, Y., Lang, Z., Zhu, H., Shi, Z., 2021. Asteria: deep learn-

ing-based AST-encoding for cross-platform binary code similarity detection. In:
2021 51st Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN). IEEE, pp. 224–236 .
u, Z., Cao, R., Tang, Q., Nie, S., Huang, J., Wu, S., 2020. Order matters: seman-

tic-aware neural networks for binary code similarity detection. In: Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 34, pp. 1145–1152 .

hang, H., Luo, S., Zhang, Y., Pan, L., 2019. An efficient android malware detec-

tion system based on method-level behavioral semantic analysis. IEEE Access
7, 69246–69256. doi: 10.1109/ACCESS.2019.2919796 .

hang, X., Zhang, Y., Zhong, M., Ding, D., Cao, Y., Zhang, Y., Zhang, M., Yang, M., 2020.
Enhancing state-of-the-art classifiers with API semantics to detect evolved an-

droid malware. In: Proceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 757–770 .

hang, Y., Rong, C., Huang, Q., Wu, Y., Yang, Z., Jiang, J., 2017. Based on multi-features
and clustering ensemble method for automatic malware categorization. In: 2017

IEEE Trustcom/BigDataSE/ICESS. IEEE, pp. 73–82 .

hang, Z., Qi, P., Wang, W., 2020. Dynamic malware analysis with feature engineer-
ing and feature learning. In: Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 34, pp. 1210–1217 .
hu, S., Shi, J., Yang, L., Qin, B., Zhang, Z., Song, L., Wang, G., 2020. Measuring and

modeling the label dynamics of online anti-malware engines. In: 29th { USENIX }
Security Symposium ({ USENIX } Security 20), pp. 2361–2378 .

Wang Yang is an Lecturer in the School of Cyber Science
and Engineering at Southeast University. He received his

PhD from the School of Computer Sciences and Technol-

ogy at the Southeast University. His research area covers
malware and binary analysis, threat intelligence analysis.

Mingzhe Gao received the MS degree from the Southeast

University in 2022. His current research interests include

system security, software security, and binary analysis. He
works on solving security problems using data-driven and

artificial intelligence approaches.

http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0022
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0023
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0024
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0025
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0026
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0027
http://arxiv.org/abs/arXiv:2106.05625
http://maecproject.github.io/
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0028
https://www.mandiant.com/resources/blog/tracking-malware-import-hashing
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0029
https://docs.microsoft.com/en-us/previous-versions//aa383723(v=vs.85)
https://opdhsblobprod02.blob.core.windows.net/contents/72a50b11a1b74f26a8d45bfae9461268/4595a9810a2114ee29054688270d62f8?sv=2018-03-28%26sr=b%26si=ReadPolicy%26sig=Mvbwe9yQ7g1BrlCfYttykDX4FdQnemJectFwr%252FYYScA%253D%26st=2021-06-07T14%253A43%253A40Z%26se=2021-06-08T14%253A53%253A40Z
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Worm:Win32/Lightmoon.H%26threatId=-2147347757
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/malware-naming
https://attack.mitre.org/
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0030
http://arxiv.org/abs/arXiv:1109.2378
https://doi.org/10.1109/TIFS.2015.2469253
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0032
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0033
http://arxiv.org/abs/arXiv:2103.14749
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0034
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0035
https://doi.org/10.1109/CESYS.2018.8724114
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0037
https://github.com/cuckoosandbox/cuckoo/wiki/Hooked-APIs-and-Categories
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0039
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0040
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0041
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0042
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0043
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0043
https://research.qianxin.com/sandbox
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/trojan.win32.wabot.disc/
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0044
https://support.virustotal.com/hc/en-us/articles/360001385857-Identifying-files-according-to-antivirus-detections
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0045
https://developers.virustotal.com/reference/files
https://www.virustotal.com
https://developers.virustotal.com/reference/authentihash
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0046
https://www.usenix.org/conference/leet-09/pehash-novel-approach-fast-malware-clustering
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0048
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0049
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0050
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0051
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0052
https://doi.org/10.1109/ACCESS.2019.2919796
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0054
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0055
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0056
http://refhub.elsevier.com/S0167-4048(23)00087-1/sbref0057

W. Yang, M. Gao, L. Chen et al. Computers & Security 128 (2023) 103177
Ligeng Chen received the BE degree in Computer Science

and Technology from Chongqing University in 2017. He is
currently pursuing the PhD degree in the Department of

Computer Science and Technology, Nanjing University. His

current research interests include software analysis, mal-
ware analysis and data mining.

Zhengxuan Liu received the BE degree in information se-
curity from the Nanjing University of Information Science

and Technology in 2021. He is currently pursuing the MS
degree in Southeast University. His current research inter-

ests include malware detection and binary analysis.
16
Lingyun Ying is a research fellow of QI-ANXIN Technol-

ogy Research Institute. He received his PhD degree from

the Graduate University of Chinese Academy of Sciences.

His research area covers software security, system secu-

rity, malware and binary analysis.

	RecMaL: Rectify the malware family label via hybrid analysis
	1 Introduction
	2 The malware mislabelling problem
	2.1 Background and terminology
	2.2 Threat model
	2.3 Motivation

	3 System design
	3.1 Overview
	3.2 Preparation module
	3.3 Feature extraction module
	3.4 Cluster module
	3.5 Label rectification

	4 Implementation
	4.1 Embedding and clustering details
	4.2 Positioning label issue types

	5 Evaluation
	5.1 Datasets
	5.2 Static filter performance
	5.3 Dynamic clustering performance
	5.4 Family label rectification

	6 Findings on BODMAS
	6.1 Label error
	6.2 Ontological issue
	6.3 Multi-label issue

	7 Discussion
	8 Related works
	9 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

